pandas.core.window.Rolling.kurt¶
Calculate unbiased rolling kurtosis.
This function uses Fisher’s definition of kurtosis without bias.
**kwargs Under Review. :return: Series or DataFrame
Returned object type is determined by the caller of the rolling calculation.
Examples¶
import pandas as pd
from numba import njit
@njit
def series_rolling_kurt():
series = pd.Series([4, 3, 5, 2, 6]) # Series of 4, 3, 5, 2, 6
out_series = series.rolling(4).kurt()
return out_series # Expect series of NaN, NaN, NaN, -1.2, -3.3
print(series_rolling_kurt())
$ python ./series/rolling/series_rolling_kurt.py
0 NaN
1 NaN
2 NaN
3 -1.2
4 -3.3
dtype: float64
import pandas as pd
from numba import njit
@njit
def df_rolling_kurt():
df = pd.DataFrame({'A': [4, 3, 5, 2, 6], 'B': [-4, -3, -5, -2, -6]})
out_df = df.rolling(4).kurt()
# Expect DataFrame of
# {'A': [NaN, NaN, NaN, -1.2, -3.3], 'B': [NaN, NaN, NaN, -1.2, -3.3]}
return out_df
print(df_rolling_kurt())
$ python ./dataframe/rolling/dataframe_rolling_kurt.py
A B
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 -1.2 -1.2
4 -3.3 -3.3
See also
- Series.rolling
Calling object with a Series.
- DataFrame.rolling
Calling object with a DataFrame.
- Series.kurt
Similar method for Series.
- DataFrame.kurt
Similar method for DataFrame.