pandas.core.window.Rolling.corr¶
Calculate rolling correlation.
- param other
- Series, DataFrame, or ndarray, optional
If not supplied then will default to self.
- param pairwise
- bool, default None
Calculate pairwise combinations of columns within a DataFrame. If other is not specified, defaults to True, otherwise defaults to False. Not relevant for
Series
. **kwargs Unused.
- return
Series or DataFrame Returned object type is determined by the caller of the rolling calculation.
Limitations¶
DataFrame/Series elements cannot be max/min float/integer. Otherwise SDC and Pandas results are different. Resulting DataFrame/Series has default index and name.
Examples¶
import pandas as pd
from numba import njit
@njit
def series_rolling_corr():
series = pd.Series([3, 3, 3, 5, 8]) # Series of 3, 3, 3, 5, 8
other = pd.Series([3, 4, 4, 4, 8]) # Series of 3, 4, 4, 4, 8
out_series = series.rolling(4).corr(other)
return out_series # Expect series of NaN, NaN, NaN, 0.333333, 0.916949
print(series_rolling_corr())
$ python ./series/rolling/series_rolling_corr.py
0 NaN
1 NaN
2 NaN
3 0.333333
4 0.916949
dtype: float64
import pandas as pd
from numba import njit
@njit
def df_rolling_corr():
df = pd.DataFrame({'A': [3, 3, 3, 5, 8], 'B': [-3, -3, -3, -5, -8]})
other = pd.DataFrame({'A': [3, 4, 4, 4, 8], 'B': [-3, -4, -4, -4, -8]})
out_df = df.rolling(4).corr(other)
# Expect DataFrame of
# {'A': [NaN, NaN, NaN, 0.333333, 0.916949],
# 'B': [NaN, NaN, NaN, 0.333333, 0.916949]}
return out_df
print(df_rolling_corr())
$ python ./dataframe/rolling/dataframe_rolling_corr.py
A B
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 0.333333 0.333333
4 0.916949 0.916949
See also
- Series.rolling
Calling object with a Series.
- DataFrame.rolling
Calling object with a DataFrame.
- Series.corr
Similar method for Series.
- DataFrame.corr
Similar method for DataFrame.