pandas.core.groupby.GroupBy.var¶
Compute variance of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
- param ddof
- integer, default 1
- degrees of freedom 
 
- return
- Series or DataFrame Variance of values within each group. 
Limitations¶
- This function may reveal slower performance than Pandas* on user system. Users should exercise a tradeoff between staying in JIT-region with that function or going back to interpreter mode. 
Examples¶
Compute variance of groups, excluding missing values.¶
import pandas as pd
from numba import njit
@njit
def df_groupby_var():
    df = pd.DataFrame({'A': [1, 2, 3, 1, 2, 3, 3, 3, 2],
                       'B': [0, 1, 5, 0, 2, 4, 3, 2, 3],
                       'C': [1, 2, 3, 4, 5, 6, 7, 8, 9]})
    out_df = df.groupby('A').var()
    # Expect DataFrame of
    # {'B': [0.000000, 1.000000, 1.666667], 'C': [4.500000, 12.333333, 4.666667} with index=[1, 2, 3]
    return out_df
print(df_groupby_var())
$ python ./dataframe/groupby/dataframe_groupby_var.py
          B          C
1  0.000000   4.500000
2  1.000000  12.333333
3  1.666667   4.666667
See also
- Series.groupby
- Group Series using a mapper or by a Series of columns. 
- DataFrame.groupby
- Group DataFrame using a mapper or by a Series of columns.