pandas.core.groupby.GroupBy.var¶
Compute variance of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
- param ddof
- integer, default 1
degrees of freedom
- return
Series or DataFrame Variance of values within each group.
Limitations¶
This function may reveal slower performance than Pandas* on user system. Users should exercise a tradeoff between staying in JIT-region with that function or going back to interpreter mode.
Examples¶
import pandas as pd
from numba import njit
@njit
def df_groupby_var():
df = pd.DataFrame({'A': [1, 2, 3, 1, 2, 3, 3, 3, 2],
'B': [0, 1, 5, 0, 2, 4, 3, 2, 3],
'C': [1, 2, 3, 4, 5, 6, 7, 8, 9]})
out_df = df.groupby('A').var()
# Expect DataFrame of
# {'B': [0.000000, 1.000000, 1.666667], 'C': [4.500000, 12.333333, 4.666667} with index=[1, 2, 3]
return out_df
print(df_groupby_var())
$ python ./dataframe/groupby/dataframe_groupby_var.py
B C
1 0.000000 4.500000
2 1.000000 12.333333
3 1.666667 4.666667
See also
- Series.groupby
Group Series using a mapper or by a Series of columns.
- DataFrame.groupby
Group DataFrame using a mapper or by a Series of columns.