pandas.core.groupby.GroupBy.count¶
Compute count of group, excluding missing values.
- return
Series or DataFrame Count of values within each group.
Limitations¶
This function may reveal slower performance than Pandas* on user system. Users should exercise a tradeoff between staying in JIT-region with that function or going back to interpreter mode.
Examples¶
import pandas as pd
import numpy as np
from numba import njit
@njit
def df_groupby_count():
df = pd.DataFrame({'A': [1, 2, 3, 1, 2, 3, 3, 3, 2],
'B': [0, 1, np.nan, np.nan, 2, 4, 3, 2, np.inf],
'C': [np.nan, 2, 3, np.nan, 5, 6, 7, 8, 9]})
out_df = df.groupby('A').count()
# Expect DataFrame of
# {'B': [1, 3, 3], 'C': [0, 3, 4} with index=[1, 2, 3]
return out_df
print(df_groupby_count())
$ python ./dataframe/groupby/dataframe_groupby_count.py
B C
1 1 0
2 3 3
3 3 4
See also
- Series.groupby
Group Series using a mapper or by a Series of columns.
- DataFrame.groupby
Group DataFrame using a mapper or by a Series of columns.