pandas.Series.sum¶
Return the sum of the values for the requested axis.
This is equivalent to the method
numpy.sum
.
- param axis
- {index (0)}
Axis for the function to be applied on.
- param skipna
- bool, default True
Exclude NA/null values when computing the result.
- param level
- int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
- param numeric_only
- bool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- param min_count
- int, default 0
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 0.22.0.
Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1. **kwargs Additional keyword arguments to be passed to the function.
- return
scalar or Series (if level specified)
Limitations¶
Parameters
axis
,level
,numeric_only
andmin_count
are currently unsupported by Intel Scalable Dataframe Compiler
Examples¶
import pandas as pd
from numba import njit
@njit
def series_sum():
series = pd.Series([5, 4, 3, 2, 1])
return series.sum() # Expect value: 15
print(series_sum())
$ python ./series/series_sum.py
15.0
See also
- Series.sum
Return the sum.
- Series.min
Return the minimum.
- Series.max
Return the maximum.
- Series.idxmin
Return the index of the minimum.
- Series.idxmax
Return the index of the maximum.
- DataFrame.sum
Return the sum over the requested axis.
- DataFrame.min
Return the minimum over the requested axis.
- DataFrame.max
Return the maximum over the requested axis.
- DataFrame.idxmin
Return the index of the minimum over the requested axis.
- DataFrame.idxmax
Return index of first occurrence of maximum over requested axis.