pandas.Series.notna

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.

return

Series Mask of bool values for each element in Series that indicates whether an element is not an NA value.

Examples

Detect existing (non-missing) values.
import numpy as np
import pandas as pd
from numba import njit


@njit
def series_notna():
    series = pd.Series([4, np.nan, 2, 1])

    return series.notna()  # Expect series of True, False, True, True


print(series_notna())
$ python ./series/series_notna.py
0     True
1    False
2     True
3     True
dtype: bool

See also

Series.notnull

Alias of notna.

Series.isna

Boolean inverse of notna.

Series.dropna

Omit axes labels with missing values.

pandas.absolute

Top-level notna.