pandas.Series.interpolate¶
Interpolate values according to different methods.
Please note that only method='linear'
is supported for
DataFrame/Series with a MultiIndex.
- param method
- str, default ‘linear’
Interpolation technique to use. One of:
- ‘linear’: Ignore the index and treat the values as equally
spaced. This is the only method supported on MultiIndexes.
- ‘time’: Works on daily and higher resolution data to interpolate
given length of interval.
‘index’, ‘values’: use the actual numerical values of the index.
‘pad’: Fill in NaNs using existing values.
- ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’,
‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g.
df.interpolate(method='polynomial', order=5)
.
- ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’:
Wrappers around the SciPy interpolation methods of similar names. See Notes.
- ‘from_derivatives’: Refers to
scipy.interpolate.BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18.
New in version 0.18.1.
Added support for the ‘akima’ method. Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in SciPy 0.18; backwards-compatible with SciPy < 0.18
- param axis
- {0 or ‘index’, 1 or ‘columns’, None}, default None
Axis to interpolate along.
- param limit
- int, optional
Maximum number of consecutive NaNs to fill. Must be greater than 0.
- param inplace
- bool, default False
Update the data in place if possible.
- param limit_direction
- {‘forward’, ‘backward’, ‘both’}, default ‘forward’
If limit is specified, consecutive NaNs will be filled in this direction.
- param limit_area
- {None, ‘inside’, ‘outside’}, default None
If limit is specified, consecutive NaNs will be filled with this restriction.
None
: No fill restriction.- ‘inside’: Only fill NaNs surrounded by valid values
(interpolate).
‘outside’: Only fill NaNs outside valid values (extrapolate).
New in version 0.23.0.
- param downcast
- optional, ‘infer’ or None, defaults to None
Downcast dtypes if possible. **kwargs Keyword arguments to pass on to the interpolating function.
- return
Series or DataFrame Returns the same object type as the caller, interpolated at some or all
NaN
values.
Warning
This feature is currently unsupported by Intel Scalable Dataframe Compiler