pandas.Series.dt.ceil¶
Perform ceil operation on the data to the specified freq.
- param freq
- str or Offset
The frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values.
- param ambiguous
- ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
Only relevant for DatetimeIndex:
- ‘infer’ will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False designates
a non-DST time (note that this flag is only applicable for ambiguous times)
‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous
times
New in version 0.24.0.
- param nonexistent
- ‘shift_forward’, ‘shift_backward’, ‘NaT’, timedelta, default ‘raise’
A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST.
- ‘shift_forward’ will shift the nonexistent time forward to the
closest existing time
- ‘shift_backward’ will shift the nonexistent time backward to the
closest existing time
‘NaT’ will return NaT where there are nonexistent times
timedelta objects will shift nonexistent times by the timedelta
- ‘raise’ will raise an NonExistentTimeError if there are
nonexistent times
New in version 0.24.0.
- return
DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series.
- raises
ValueError if the freq cannot be converted.
Warning
This feature is currently unsupported by Intel Scalable Dataframe Compiler