pandas.DataFrame.plot.density¶
Generate Kernel Density Estimate plot using Gaussian kernels.
In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination.
- param bw_method
- str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See
scipy.stats.gaussian_kde
for more information.
- param ind
- NumPy array or integer, optional
Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used. **kwds : optional Additional keyword arguments are documented in
pandas.%(this-datatype)s.plot()
.
- return
matplotlib.axes.Axes or numpy.ndarray of them
Warning
This feature is currently unsupported by Intel Scalable Dataframe Compiler