.. _sfmt19937_brng: SFMT19937 brng ============== The SIMD-oriented Mersenne Twister pseudo-random number generator can be initialized with either an integral seed, a list of integral seeds, or automatically. .. code-block:: python :caption: Construction for SFMT19937 basic pseudo-random number generator with scalar seed import mkl_random rs = mkl_random.RandomState(1234, brng="SFMT19937") # Use random state instance to generate 1000 random numbers from # Exponential distribution esample = rs.exponential(2.3, size=1000) .. code-block:: python :caption: Construction for SFMT19937 basic pseudo-random number generator with vector seed import mkl_random rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="SFMT19937") # Use random state instance to generate 1000 random numbers from # Gamma distibution gsample = rs_vec.gamma(3, 1, size=1000) When seed is not specified, the generator is initialized using system clock, e.g.: .. code-block:: python :caption: Construction for SFMT19937 basic pseudo-random number generator with automatic seed import mkl_random rs_def = mkl_random.RandomState(brng="SFMT19937") # Use random state instance to generate 1000 random numbers # from discrete uniform distribution [1, 6] isample = rs_def.randint(1, 6 + 1, size=1000)