dpnp.where
- dpnp.where(condition, x=None, y=None, /, *, order='K', out=None)[source]
Return elements chosen from x or y depending on condition.
When only condition is provided, this function is a shorthand for
dpnp.nonzero(condition)
.For full documentation refer to
numpy.where
.- Parameters:
condition ({dpnp.ndarray, usm_ndarray}) -- When
True
, yield x, otherwise yield y.x ({dpnp.ndarray, usm_ndarray, scalar}, optional) -- Values from which to choose. x, y and condition need to be broadcastable to some shape.
y ({dpnp.ndarray, usm_ndarray, scalar}, optional) -- Values from which to choose. x, y and condition need to be broadcastable to some shape.
order ({"K", "C", "F", "A"}, optional) -- Memory layout of the new output array, if keyword out is
None
. Default:"K"
.out ({None, dpnp.ndarray, usm_ndarray}, optional) -- The array into which the result is written. The data type of out must match the expected shape and the expected data type of the result. If
None
then a new array is returned. Default:None
.
- Returns:
y -- An array with elements from x when condition is
True
, and elements from y elsewhere.- Return type:
dpnp.ndarray
See also
dpnp.choose
Construct an array from an index array and a list of arrays to choose from.
dpnp.nonzero
Return the indices of the elements that are non-zero.
Examples
>>> import dpnp as np >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.where(a < 5, a, 10*a) array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
This can be used on multidimensional arrays too:
>>> np.where(np.array([[True, False], [True, True]]), ... np.array([[1, 2], [3, 4]]), ... np.array([[9, 8], [7, 6]])) array([[1, 8], [3, 4]])
The shapes of x, y, and the condition are broadcast together:
>>> x, y = np.ogrid[:3, :4] >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast array([[10, 0, 0, 0], [10, 11, 1, 1], [10, 11, 12, 2]])
>>> a = np.array([[0, 1, 2], ... [0, 2, 4], ... [0, 3, 6]]) >>> np.where(a < 4, a, -1) # -1 is broadcast array([[ 0, 1, 2], [ 0, 2, -1], [ 0, 3, -1]])