dpnp.right_shift
- dpnp.right_shift(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Shifts the bits of each element x1_i of the input array x1 to the right according to the respective element x2_i of the input array x2.
Note that
dpnp.bitwise_right_shift
is an alias ofdpnp.right_shift
.For full documentation refer to
numpy.right_shift
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have integer data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have integer data type. Each element must be greater than or equal to
0
. Both inputs x1 and x2 can not be scalars at the same time.out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise results. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.left_shift
Shift the bits of an integer to the left.
dpnp.binary_repr
Return the binary representation of the input number as a string.
Examples
>>> import dpnp as np >>> x1 = np.array([10]) >>> x2 = np.array([1, 2, 3]) >>> np.right_shift(x1, x2) array([5, 2, 1])
The
>>
operator can be used as a shorthand forright_shift
ondpnp.ndarray
.>>> x1 >> x2 array([5, 2, 1])
>>> np.binary_repr(10) '1010' >>> np.right_shift(np.array(10), 1) array(5) >>> np.binary_repr(5) '101'