dpnp.nan_to_num
- dpnp.nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)[source]
- Replace - NaNwith zero and infinity with large finite numbers (default behavior) or with the numbers defined by the user using the nan, posinf and/or neginf keywords.- If x is inexact, - NaNis replaced by zero or by the user defined value in nan keyword, infinity is replaced by the largest finite floating point values representable by- x.dtypeor by the user defined value in posinf keyword and -infinity is replaced by the most negative finite floating point values representable by- x.dtypeor by the user defined value in neginf keyword.- For complex dtypes, the above is applied to each of the real and imaginary components of x separately. - If x is not inexact, then no replacements are made. - For full documentation refer to - numpy.nan_to_num.- Parameters:
- x ({dpnp.ndarray, usm_ndarray}) -- Input data. 
- copy (bool, optional) -- - Whether to create a copy of x ( - True) or to replace values in-place (- False). The in-place operation only occurs if casting to an array does not require a copy.- Default: - True.
- nan ({int, float, bool}, optional) -- - Value to be used to fill - NaNvalues.- Default: - 0.0.
- posinf ({int, float, bool, None}, optional) -- - Value to be used to fill positive infinity values. If no value is passed then positive infinity values will be replaced with a very large number. - Default: - None.
- neginf ({int, float, bool, None} optional) -- - Value to be used to fill negative infinity values. If no value is passed then negative infinity values will be replaced with a very small (or negative) number. - Default: - None.
 
- Returns:
- out -- x, with the non-finite values replaced. If copy is - False, this may be x itself.
- Return type:
- dpnp.ndarray 
 - See also - dpnp.isinf
- Shows which elements are positive or negative infinity. 
- dpnp.isneginf
- Shows which elements are negative infinity. 
- dpnp.isposinf
- Shows which elements are positive infinity. 
- dpnp.isnan
- Shows which elements are Not a Number (NaN). 
- dpnp.isfinite
- Shows which elements are finite (not NaN, not infinity) 
 - Examples - >>> import dpnp as np >>> np.nan_to_num(np.array(np.inf)) array(1.79769313e+308) >>> np.nan_to_num(np.array(-np.inf)) array(-1.79769313e+308) >>> np.nan_to_num(np.array(np.nan)) array(0.) >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) >>> np.nan_to_num(x) array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, -1.28000000e+002, 1.28000000e+002]) >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, -1.2800000e+02, 1.2800000e+02]) >>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) >>> np.nan_to_num(y) array([1.79769313e+308 +0.00000000e+000j, # may vary 0.00000000e+000 +0.00000000e+000j, 0.00000000e+000 +1.79769313e+308j]) >>> np.nan_to_num(y, nan=111111, posinf=222222) array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])