dpnp.linalg.vecdot
- dpnp.linalg.vecdot(x1, x2, /, *, axis=-1)[source]
Computes the vector dot product.
This function is restricted to arguments compatible with the Array API, contrary to
dpnp.vecdot
.Let \(\mathbf{a}\) be a vector in x1 and \(\mathbf{b}\) be a corresponding vector in x2. The dot product is defined as:
\[\mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} \overline{a_i}b_i\]over the dimension specified by axis and where \(\overline{a_i}\) denotes the complex conjugate if \(a_i\) is complex and the identity otherwise.
For full documentation refer to
numpy.linalg.vecdot
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray}) -- First input array.
x2 ({dpnp.ndarray, usm_ndarray}) -- Second input array.
axis (int, optional) -- Axis over which to compute the dot product. Default:
-1
.
- Returns:
out -- The vector dot product of the inputs.
- Return type:
dpnp.ndarray
See also
dpnp.vecdot
Similar function with support for more keyword arguments.
dpnp.vdot
Complex-conjugating dot product.
Examples
Get the projected size along a given normal for an array of vectors.
>>> import dpnp as np >>> v = np.array([[0., 5., 0.], [0., 0., 10.], [0., 6., 8.]]) >>> n = np.array([0., 0.6, 0.8]) >>> np.linalg.vecdot(v, n) array([ 3., 8., 10.])