dpnp.linalg.trace
- dpnp.linalg.trace(x, /, *, offset=0, dtype=None)[source]
Returns the sum along the specified diagonals of a matrix (or a stack of matrices) x.
This function is Array API compatible, contrary to
dpnp.trace
.For full documentation refer to
numpy.linalg.trace
.- Parameters:
x ((...,M,N) {dpnp.ndarray, usm_ndarray}) -- Input array having shape (..., M, N) and whose innermost two dimensions form
MxN
matrices.offset (int, optional) --
Offset specifying the off-diagonal relative to the main diagonal, where:
offset = 0: the main diagonal.
offset > 0: off-diagonal above the main diagonal.
offset < 0: off-diagonal below the main diagonal.
Default:
0
.dtype (dtype, optional) -- Determines the data-type of the returned array and of the accumulator where the elements are summed. If dtype has the value
None
and a is of integer type of precision less than the default integer precision, then the default integer precision is used. Otherwise, the precision is the same as that of a. Default:None
.
- Returns:
out -- An array containing the traces and whose shape is determined by removing the last two dimensions and storing the traces in the last array dimension. For example, if x has rank k and shape: (I, J, K, ..., L, M, N), then an output array has rank k-2 and shape: (I, J, K, ..., L) where:
out[i, j, k, ..., l] = dpnp.linalg.trace(a[i, j, k, ..., l, :, :])
The returned array must have a data type as described by the dtype parameter above.
- Return type:
dpnp.ndarray
See also
dpnp.trace
Similar function with support for more keyword arguments.
Examples
>>> import dpnp as np >>> np.linalg.trace(np.eye(3)) array(3.) >>> a = np.arange(8).reshape((2, 2, 2)) >>> np.linalg.trace(a) array([3, 11])
Trace is computed with the last two axes as the 2-d sub-arrays. This behavior differs from
dpnp.trace
which uses the first two axes by default.>>> a = np.arange(24).reshape((3, 2, 2, 2)) >>> np.linalg.trace(a).shape (3, 2)
Traces adjacent to the main diagonal can be obtained by using the offset argument:
>>> a = np.arange(9).reshape((3, 3)); a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.linalg.trace(a, offset=1) # First superdiagonal array(6) >>> np.linalg.trace(a, offset=2) # Second superdiagonal array(2) >>> np.linalg.trace(a, offset=-1) # First subdiagonal array(10) >>> np.linalg.trace(a, offset=-2) # Second subdiagonal array(6)