dpnp.linalg.svdvals
- dpnp.linalg.svdvals(x, /)[source]
Returns the singular values of a matrix (or a stack of matrices) x.
When x is a stack of matrices, the function will compute the singular values for each matrix in the stack.
Calling
dpnp.linalg.svdvals(x)
to get singular values is the same asdpnp.linalg.svd(x, compute_uv=False, hermitian=False)
.For full documentation refer to
numpy.linalg.svdvals
.- Parameters:
x ((..., M, N) {dpnp.ndarray, usm_ndarray}) -- Input array with
x.ndim >= 2
and whose last two dimensions form matrices on which to perform singular value decomposition.- Returns:
out -- Vector(s) of singular values of length K, where K = min(M, N).
- Return type:
(..., K) dpnp.ndarray
See also
dpnp.linalg.svd
Compute the singular value decomposition.
Examples
>>> import dpnp as np >>> a = np.array([[3, 0], [0, 4]]) >>> np.linalg.svdvals(a) array([4., 3.])
This is equivalent to calling:
>>> np.linalg.svd(a, compute_uv=False, hermitian=False) array([4., 3.])
Stack of matrices:
>>> b = np.array([[[6, 0], [0, 8]], [[9, 0], [0, 12]]]) >>> np.linalg.svdvals(b) array([[ 8., 6.], [12., 9.]])