dpnp.linalg.slogdet
- dpnp.linalg.slogdet(a)[source]
Compute the sign and (natural) logarithm of the determinant of an array.
For full documentation refer to
numpy.linalg.slogdet
.- Parameters:
a ((..., M, M) {dpnp.ndarray, usm_ndarray}) -- Input array, has to be a square 2-D array.
- Returns:
sign ((...) dpnp.ndarray) -- A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0.
logabsdet ((...) dpnp.ndarray) -- The natural log of the absolute value of the determinant.
See also
dpnp.det
Returns the determinant of an array.
Examples
The determinant of a 2-D array
[[a, b], [c, d]]
isad - bc
:>>> import dpnp as dp >>> a = dp.array([[1, 2], [3, 4]]) >>> (sign, logabsdet) = dp.linalg.slogdet(a) >>> (sign, logabsdet) (array(-1.), array(0.69314718)) >>> sign * dp.exp(logabsdet) array(-2.)
Computing log-determinants for a stack of matrices:
>>> a = dp.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logabsdet = dp.linalg.slogdet(a) >>> (sign, logabsdet) (array([-1., -1., -1.]), array([0.69314718, 1.09861229, 2.07944154])) >>> sign * dp.exp(logabsdet) array([-2., -3., -8.])