dpnp.histogram2d
- dpnp.histogram2d(x, y, bins=10, range=None, density=None, weights=None)[source]
Compute the bi-dimensional histogram of two data samples.
- Parameters:
x ({dpnp.ndarray, usm_ndarray} of shape (N,)) -- An array containing the x coordinates of the points to be histogrammed.
y ({dpnp.ndarray, usm_ndarray} of shape (N,)) -- An array containing the y coordinates of the points to be histogrammed.
bins ({int, dpnp.ndarray, usm_ndarray, [int, int], [array, array], [int, array], [array, int]}, optional) --
The bins specification:
If int, the number of bins for the two dimensions (nx=ny=bins).
If array, the bin edges for the two dimensions (x_edges=y_edges=bins).
If [int, int], the number of bins in each dimension (nx, ny = bins).
If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).
A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges.
Default:
10
.range ({None, dpnp.ndarray, usm_ndarray} of shape (2,2), optional) --
The leftmost and rightmost edges of the bins along each dimension If
None
the ranges are[[x.min(), x.max()], [y.min(), y.max()]]
. All values outside of this range will be considered outliers and not tallied in the histogram.Default:
None
.density ({None, bool}, optional) --
If
False
orNone
, the default, returns the number of samples in each bin. IfTrue
, returns the probability density function at the bin,bin_count / sample_count / bin_volume
.Default:
None
.weights ({None, dpnp.ndarray, usm_ndarray} of shape (N,), optional) --
An array of values
w_i
weighing each sample(x_i, y_i)
. Weights are normalized to1
if density isTrue
. If density isFalse
, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. IfNone
all samples are assigned a weight of1
.Default:
None
.
- Returns:
H (dpnp.ndarray of shape (nx, ny)) -- The bi-dimensional histogram of samples x and y. Values in x are histogrammed along the first dimension and values in y are histogrammed along the second dimension.
xedges (dpnp.ndarray of shape (nx+1,)) -- The bin edges along the first dimension.
yedges (dpnp.ndarray of shape (ny+1,)) -- The bin edges along the second dimension.
See also
dpnp.histogram
1D histogram
dpnp.histogramdd
Multidimensional histogram
Notes
When density is
True
, then the returned histogram is the sample density, defined such that the sum over bins of the productbin_value * bin_area
is 1.Please note that the histogram does not follow the Cartesian convention where x values are on the abscissa and y values on the ordinate axis. Rather, x is histogrammed along the first dimension of the array (vertical), and y along the second dimension of the array (horizontal). This ensures compatibility with histogramdd.
Examples
>>> import dpnp as np >>> x = np.random.randn(20).astype("float32") >>> y = np.random.randn(20).astype("float32") >>> hist, edges_x, edges_y = np.histogram2d(x, y, bins=(4, 3)) >>> hist.shape (4, 3) >>> hist array([[1., 2., 0.], [0., 3., 1.], [1., 4., 1.], [1., 3., 3.]], dtype=float32) >>> edges_x.shape (5,) >>> edges_x array([-1.7516936 , -0.96109843, -0.17050326, 0.62009203, 1.4106871 ], dtype=float32) >>> edges_y.shape (4,) >>> edges_y array([-2.6604428 , -0.94615364, 0.76813555, 2.4824247 ], dtype=float32)
Please note, that resulting values of histogram and edges may vary.