dpnp.heaviside
- dpnp.heaviside(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Compute the Heaviside step function.
The Heaviside step function is defined as:
0 if x1 < 0 heaviside(x1, x2) = x2 if x1 == 0 1 if x1 > 0
where x2 is often taken to be 0.5, but 0 and 1 are also sometimes used.
- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- Input values, expected to have a real-valued floating-point data type.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- The value of the function when x1 is
0
, also expected to have a real-valued floating-point data type.out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None
.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None
.Default:
"K"
.
- Returns:
out -- The output array, element-wise Heaviside step function of x1.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.Notes
At least one of x1 or x2 must be an array.
If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).Examples
>>> import dpnp as np >>> a = np.array([-1.5, 0, 2.0]) >>> np.heaviside(a, 0.5) array([0. , 0.5, 1. ]) >>> np.heaviside(a, 1) array([0., 1., 1.])