dpnp.fmod
- dpnp.fmod(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Calculates the remainder of division for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
This function is equivalent to the Matlab(TM)
rem
function and should not be confused with the Python modulus operatorx1 % x2
.For full documentation refer to
numpy.fmod
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have a real-valued data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have a real-valued data type. Both inputs x1 and x2 can not be scalars at the same time. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise remainders. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.remainder
Equivalent to the Python
%
operator.dpnp.divide
Standard division.
Examples
>>> import dpnp as np >>> a = np.array([-3, -2, -1, 1, 2, 3]) >>> np.fmod(a, 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder(a, 2) array([1, 0, 1, 1, 0, 1])
>>> np.fmod(np.array([5, 3]), np.array([2, 2.])) array([1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, np.array([2, 2])) array([[-1, 0], [-1, 0], [ 1, 0]])