dpnp.floor_divide
- dpnp.floor_divide(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Calculates the ratio for each element x1_i of the input array x1 with the respective element x2_i of the input array x2 to the greatest integer-value number that is not greater than the division result.
For full documentation refer to
numpy.floor_divide
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have numeric data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have numeric data type. Both inputs x1 and x2 can not be scalars at the same time. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the result of element-wise floor of division. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.remainder
Remainder complementary to floor_divide.
dpnp.divide
Standard division.
dpnp.floor
Round a number to the nearest integer toward minus infinity.
dpnp.ceil
Round a number to the nearest integer toward infinity.
Examples
>>> import dpnp as np >>> np.floor_divide(np.array([1, -1, -2, -9]), -2) array([-1, 0, 1, 4])
>>> np.floor_divide(np.array([1., 2., 3., 4.]), 2.5) array([ 0., 0., 1., 1.])
The
//
operator can be used as a shorthand forfloor_divide
ondpnp.ndarray
.>>> x1 = np.array([1., 2., 3., 4.]) >>> x1 // 2.5 array([0., 0., 1., 1.])