dpnp.fft.fft
- dpnp.fft.fft(a, n=None, axis=-1, norm=None, out=None)[source]
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm.
For full documentation refer to
numpy.fft.fft
.- Parameters:
a ({dpnp.ndarray, usm_ndarray}) -- Input array, can be complex.
n ({None, int}, optional) -- Length of the transformed axis of the output. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used. Default:
None
.axis (int, optional) -- Axis over which to compute the FFT. If not given, the last axis is used. Default:
-1
.norm ({None, "backward", "ortho", "forward"}, optional) -- Normalization mode (see
dpnp.fft
). Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor.None
is an alias of the default option"backward"
. Default:"backward"
.out ({None, dpnp.ndarray or usm_ndarray of complex dtype}, optional) -- If provided, the result will be placed in this array. It should be of the appropriate shape (consistent with the choice of n) and dtype. Default:
None
.
- Returns:
out -- The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified.
- Return type:
dpnp.ndarray of complex dtype
See also
dpnp.fft
For definition of the DFT and conventions used.
dpnp.fft.ifft
The inverse of
dpnp.fft.fft
.dpnp.fft.fft2
The two-dimensional FFT.
dpnp.fft.fftn
The N-dimensional FFT.
dpnp.fft.rfftn
The N-dimensional FFT of real input.
dpnp.fft.fftfreq
Frequency bins for given FFT parameters.
Notes
FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in the documentation for the
dpnp.fft
module.Examples
>>> import dpnp as np >>> a = np.exp(2j * np.pi * np.arange(8) / 8) >>> np.fft.fft(a) array([-3.44509285e-16+1.14423775e-17j, 8.00000000e+00-8.52069395e-16j, 2.33486982e-16+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j, 9.95799250e-17+2.33486982e-16j, -8.88178420e-16+1.17281316e-16j, 1.14423775e-17+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j])