dpnp.dtype

class dpnp.dtype(dtype, align=False, copy=False[, metadata])

Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be constructed from different combinations of fundamental numeric types.

Parameters:
  • dtype -- Object to be converted to a data type object.

  • align (bool, optional) -- Add padding to the fields to match what a C compiler would output for a similar C-struct. Can be True only if obj is a dictionary or a comma-separated string. If a struct dtype is being created, this also sets a sticky alignment flag isalignedstruct.

  • copy (bool, optional) -- Make a new copy of the data-type object. If False, the result may just be a reference to a built-in data-type object.

  • metadata (dict, optional) -- An optional dictionary with dtype metadata.

See also

result_type

Examples

Using array-scalar type:

>>> import numpy as np
>>> np.dtype(np.int16)
dtype('int16')

Structured type, one field name 'f1', containing int16:

>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Structured type, one field named 'f1', in itself containing a structured type with one field:

>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Structured type, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
dtype([('f1', '<u8'), ('f2', '<i4')])

Using array-protocol type strings:

>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', 'S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples. int is a fixed type, 3 the field's shape. void is a flexible type, here of size 10:

>>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
dtype([('hello', '<i8', (3,)), ('world', 'V10')])

Subdivide int16 into 2 int8's, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))

Using dictionaries. Two fields named 'gender' and 'age':

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', 'S1'), ('age', 'u1')])

Offsets in bytes, here 0 and 25:

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', 'S25'), ('age', 'u1')])