dpnp.cumulative_prod
- dpnp.cumulative_prod(x, /, *, axis=None, dtype=None, out=None, include_initial=False)[source]
Return the cumulative product of elements along a given axis.
This function is an Array API compatible alternative to
dpnp.cumprod
.For full documentation refer to
numpy.cumulative_prod
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array.
axis ({None, int}, optional) -- Axis along which the cumulative product is computed. The default value is only allowed for one-dimensional arrays. For arrays with more than one dimension axis is required. Default:
None
.dtype ({None, dtype}, optional) -- Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of x, unless x has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. Default:
None
.out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. Default:
None
.include_initial (bool, optional) -- Boolean indicating whether to include the initial value (ones) as the first value in the output. With
include_initial=True
the shape of the output is different than the shape of the input. Default:False
.
- Returns:
out -- A new array holding the result is returned unless out is specified, in which case a reference to out is returned. The result has the same shape as x if
include_initial=False
.- Return type:
dpnp.ndarray
See also
dpnp.prod
Product array elements.
Examples
>>> import dpnp as np >>> a = np.array([1, 2, 3]) >>> np.cumulative_prod(a) # intermediate results 1, 1*2 ... # total product 1*2*3 = 6 array([1, 2, 6]) >>> a = np.array([1, 2, 3, 4, 5, 6]) >>> np.cumulative_prod(a, dtype=np.float32) # specify type of output array([ 1., 2., 6., 24., 120., 720.], dtype=float32)
The cumulative product for each column (i.e., over the rows) of b:
>>> b = np.array([[1, 2, 3], [4, 5, 6]]) >>> np.cumulative_prod(b, axis=0) array([[ 1, 2, 3], [ 4, 10, 18]])
The cumulative product for each row (i.e. over the columns) of b:
>>> np.cumulative_prod(b, axis=1) array([[ 1, 2, 6], [ 4, 20, 120]])