dpnp.cumsum
- dpnp.cumsum(a, axis=None, dtype=None, out=None)[source]
Return the cumulative sum of the elements along a given axis.
For full documentation refer to
numpy.cumsum
.- Parameters:
a ({dpnp.ndarray, usm_ndarray}) -- Input array.
axis ({None, int}, optional) -- Axis along which the cumulative sum is computed. It defaults to compute the cumulative sum over the flattened array. Default:
None
.dtype ({None, dtype}, optional) -- Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. Default:
None
.out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. Default:
None
.
- Returns:
out -- A new array holding the result is returned unless out is specified as
dpnp.ndarray
, in which case a reference to out is returned. The result has the same size as a, and the same shape as a if axis is notNone
or a is a 1-d array.- Return type:
dpnp.ndarray
See also
dpnp.cumulative_sum
Array API compatible alternative for
dpnp.cumsum
.dpnp.sum
Sum array elements.
dpnp.trapezoid
Integration of array values using composite trapezoidal rule.
dpnp.diff
Calculate the n-th discrete difference along given axis.
Examples
>>> import dpnp as np >>> a = np.array([[1, 2, 3], [4, 5, 6]]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> np.cumsum(a) array([ 1, 3, 6, 10, 15, 21]) >>> np.cumsum(a, dtype=np.float32) # specifies type of output value(s) array([ 1., 3., 6., 10., 15., 21.], dtype=np.float32)
>>> np.cumsum(a, axis=0) # sum over rows for each of the 3 columns array([[1, 2, 3], [5, 7, 9]]) >>> np.cumsum(a, axis=1) # sum over columns for each of the 2 rows array([[ 1, 3, 6], [ 4, 9, 15]])
cumsum(b)[-1]
may not be equal tosum(b)
>>> b = np.array([1, 2e-7, 3e-7] * 100000, dtype=np.float32) >>> b.cumsum().dtype == b.sum().dtype == np.float32 True >>> b.cumsum()[-1] == b.sum() array(False)