dpnp.clip
- dpnp.clip(a, /, min=None, max=None, *, out=None, order='K', **kwargs)[source]
Clip (limit) the values in an array.
For full documentation refer to
numpy.clip
.- Parameters:
a ({dpnp.ndarray, usm_ndarray}) -- Array containing elements to clip.
min ({dpnp.ndarray, usm_ndarray, None}) -- Minimum and maximum value. If
None
, clipping is not performed on the corresponding edge. If both min and max areNone
, the elements of the returned array stay the same. Both are broadcast against a. Default :None
.max ({dpnp.ndarray, usm_ndarray, None}) -- Minimum and maximum value. If
None
, clipping is not performed on the corresponding edge. If both min and max areNone
, the elements of the returned array stay the same. Both are broadcast against a. Default :None
.out ({None, dpnp.ndarray, usm_ndarray}, optional) -- The results will be placed in this array. It may be the input array for in-place clipping. out must be of the right shape to hold the output. Its type is preserved. Default :
None
.order ({"C", "F", "A", "K", None}, optional) -- Memory layout of the newly output array, if parameter out is
None
. If order isNone
, the default value"K"
will be used. Default:"K"
.
- Returns:
out -- An array with the elements of a, but where values < min are replaced with min, and those > max with max.
- Return type:
dpnp.ndarray
Limitations
Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.Examples
>>> import dpnp as np >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> np.clip(a, 8, 1) array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> min = np.array([3, 4, 1, 1, 1, 4, 4, 4, 4, 4]) >>> np.clip(a, min, 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])