dpnp.array_equiv
- dpnp.array_equiv(a1, a2)[source]
Returns
True
if input arrays are shape consistent and all elements equal.Shape consistent means they are either the same shape, or one input array can be broadcasted to create the same shape as the other one.
For full documentation refer to
numpy.array_equiv
.- Parameters:
a1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array. Both inputs x1 and x2 can not be scalars at the same time.
a2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array. Both inputs x1 and x2 can not be scalars at the same time.
- Returns:
out -- An array with a data type of bool.
True
if equivalent,False
otherwise.- Return type:
dpnp.ndarray
Examples
>>> import dpnp as np >>> a = np.array([1, 2]) >>> b = np.array([1, 2]) >>> c = np.array([1, 3]) >>> np.array_equiv(a, b) array(True) >>> np.array_equiv(a, c) array(False)
Showing the shape equivalence:
>>> b = np.array([[1, 2], [1, 2]]) >>> c = np.array([[1, 2, 1, 2], [1, 2, 1, 2]]) >>> np.array_equiv(a, b) array(True) >>> np.array_equiv(a, c) array(False)
>>> b = np.array([[1, 2], [1, 3]]) >>> np.array_equiv(a, b) array(False)