dpnp.arctan2
- dpnp.arctan2(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Calculates the inverse tangent of the quotient x1_i/x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2. Each element-wise result is expressed in radians.
Note that
dpnp.atan2
is an alias ofdpnp.arctan2
. This function is not defined for complex-valued arguments; for the so-called argument of complex values, usedpnp.angle
.For full documentation refer to
numpy.arctan2
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have a real-valued floating-point data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have a real-valued floating-point data type. Both inputs x1 and x2 can not be scalars at the same time.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the inverse tangent of the quotient x1/x2. The returned array must have a real-valued floating-point data type determined by Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword arguments kwargs are currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.arctan
Trigonometric inverse tangent, element-wise.
dpnp.tan
Compute tangent element-wise.
dpnp.angle
Return the angle of the complex argument.
dpnp.arcsin
Trigonometric inverse sine, element-wise.
dpnp.arccos
Trigonometric inverse cosine, element-wise.
dpnp.arctanh
Inverse hyperbolic tangent, element-wise.
Examples
>>> import dpnp as np >>> x1 = np.array([1., -1.]) >>> x2 = np.array([0., 0.]) >>> np.arctan2(x1, x2) array([1.57079633, -1.57079633])
>>> x1 = np.array([0., 0., np.inf]) >>> x2 = np.array([+0., -0., np.inf]) >>> np.arctan2(x1, x2) array([0.0 , 3.14159265, 0.78539816])
>>> x1 = np.array([-1, +1, +1, -1]) >>> x2 = np.array([-1, -1, +1, +1]) >>> np.arctan2(x1, x2) * 180 / np.pi array([-135., -45., 45., 135.])