dpnp.add
- dpnp.add(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
- Calculates the sum for each element \(x1_i\) of the input array x1 with the respective element \(x2_i\) of the input array x2. - For full documentation refer to - numpy.add.- Parameters:
- x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, may have any data type. 
- x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also may have any data type. 
- out ({None, dpnp.ndarray, usm_ndarray}, optional) -- - Output array to populate. Array must have the correct shape and the expected data type. - Default: - None.
- order ({None, "C", "F", "A", "K"}, optional) -- - Memory layout of the newly output array, if parameter out is - None.- Default: - "K".
 
- Returns:
- out -- An array containing the element-wise sums. The data type of the returned array is determined by the Type Promotion Rules. 
- Return type:
- dpnp.ndarray 
 - Limitations - Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise - NotImplementedErrorexception will be raised.- Notes - At least one of x1 or x2 must be an array. - If - x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).- Equivalent to \(x1 + x2\) in terms of array broadcasting. - Examples - >>> import dpnp as np >>> a = np.array([1, 2, 3]) >>> b = np.array([1, 2, 3]) >>> np.add(a, b) array([2, 4, 6]) - >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) - The - +operator can be used as a shorthand for- addon- dpnp.ndarray.- >>> x1 + x2 array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])