33#include <oneapi/mkl.hpp>
34#include <sycl/sycl.hpp>
36#include <dpctl4pybind11.hpp>
37#include <pybind11/pybind11.h>
40#include "ext/common.hpp"
43#include "utils/memory_overlap.hpp"
44#include "utils/type_dispatch.hpp"
52#ifndef __INTEL_MKL_2023_2_0_VERSION_REQUIRED
53#define __INTEL_MKL_2023_2_0_VERSION_REQUIRED 20230002L
56static_assert(INTEL_MKL_VERSION >= __INTEL_MKL_2023_2_0_VERSION_REQUIRED,
57 "OneMKL does not meet minimum version requirement");
59namespace ext_ns = ext::common;
60namespace py = pybind11;
61namespace td_ns = dpctl::tensor::type_dispatch;
63namespace dpnp::extensions::vm::py_internal
65template <
typename output_typesT,
typename contig_dispatchT>
66bool need_to_call_unary_ufunc(sycl::queue &exec_q,
67 const dpctl::tensor::usm_ndarray &src,
68 const dpctl::tensor::usm_ndarray &dst,
69 const output_typesT &output_type_vec,
70 const contig_dispatchT &contig_dispatch_vector)
73 int src_typenum = src.get_typenum();
74 int dst_typenum = dst.get_typenum();
76 auto array_types = td_ns::usm_ndarray_types();
77 int src_typeid = array_types.typenum_to_lookup_id(src_typenum);
78 int dst_typeid = array_types.typenum_to_lookup_id(dst_typenum);
81 int func_output_typeid = output_type_vec[src_typeid];
82 if (dst_typeid != func_output_typeid) {
87 if (!exec_q.get_device().has(sycl::aspect::fp64)) {
92 if (!dpctl::utils::queues_are_compatible(exec_q, {src, dst})) {
97 int dst_nd = dst.get_ndim();
98 if (dst_nd != src.get_ndim()) {
101 else if (dst_nd == 0) {
107 const py::ssize_t *src_shape = src.get_shape_raw();
108 const py::ssize_t *dst_shape = dst.get_shape_raw();
109 bool shapes_equal(
true);
110 size_t src_nelems(1);
112 for (
int i = 0; i < dst_nd; ++i) {
113 src_nelems *=
static_cast<size_t>(src_shape[i]);
114 shapes_equal = shapes_equal && (src_shape[i] == dst_shape[i]);
121 if (src_nelems == 0) {
126 auto dst_offsets = dst.get_minmax_offsets();
130 static_cast<size_t>(dst_offsets.second - dst_offsets.first);
131 if (range + 1 < src_nelems) {
137 auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
138 if (overlap(src, dst)) {
143 bool is_src_c_contig = src.is_c_contiguous();
144 bool is_dst_c_contig = dst.is_c_contiguous();
146 bool all_c_contig = (is_src_c_contig && is_dst_c_contig);
152 if (contig_dispatch_vector[src_typeid] ==
nullptr) {
158template <
typename output_typesT,
typename contig_dispatchT>
159bool need_to_call_unary_two_outputs_ufunc(
161 const dpctl::tensor::usm_ndarray &src,
162 const dpctl::tensor::usm_ndarray &dst1,
163 const dpctl::tensor::usm_ndarray &dst2,
164 const output_typesT &output_type_vec,
165 const contig_dispatchT &contig_dispatch_vector)
168 int src_typenum = src.get_typenum();
169 int dst1_typenum = dst1.get_typenum();
170 int dst2_typenum = dst2.get_typenum();
172 const auto &array_types = td_ns::usm_ndarray_types();
173 int src_typeid = array_types.typenum_to_lookup_id(src_typenum);
174 int dst1_typeid = array_types.typenum_to_lookup_id(dst1_typenum);
175 int dst2_typeid = array_types.typenum_to_lookup_id(dst2_typenum);
177 std::pair<int, int> func_output_typeids = output_type_vec[src_typeid];
180 if (dst1_typeid != func_output_typeids.first ||
181 dst2_typeid != func_output_typeids.second)
187 if (!exec_q.get_device().has(sycl::aspect::fp64)) {
192 if (!dpctl::utils::queues_are_compatible(exec_q, {src, dst1, dst2})) {
197 int src_nd = src.get_ndim();
198 int dst1_nd = dst1.get_ndim();
199 int dst2_nd = dst2.get_ndim();
200 if (src_nd != dst1_nd || src_nd != dst2_nd) {
203 else if (dst1_nd == 0 || dst2_nd == 0) {
209 const py::ssize_t *src_shape = src.get_shape_raw();
210 const py::ssize_t *dst1_shape = dst1.get_shape_raw();
211 const py::ssize_t *dst2_shape = dst2.get_shape_raw();
212 bool shapes_equal(
true);
213 size_t src_nelems(1);
215 for (
int i = 0; i < src_nd; ++i) {
216 src_nelems *=
static_cast<std::size_t
>(src_shape[i]);
217 shapes_equal = shapes_equal && (src_shape[i] == dst1_shape[i]) &&
218 (src_shape[i] == dst2_shape[i]);
225 if (src_nelems == 0) {
230 auto dst1_offsets = dst1.get_minmax_offsets();
231 auto dst2_offsets = dst2.get_minmax_offsets();
235 static_cast<size_t>(dst1_offsets.second - dst1_offsets.first);
237 static_cast<size_t>(dst2_offsets.second - dst2_offsets.first);
238 if ((range1 + 1 < src_nelems) || (range2 + 1 < src_nelems)) {
244 auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
245 if (overlap(src, dst1) || overlap(src, dst2) || overlap(dst1, dst2)) {
250 bool is_src_c_contig = src.is_c_contiguous();
251 bool is_dst1_c_contig = dst1.is_c_contiguous();
252 bool is_dst2_c_contig = dst2.is_c_contiguous();
255 (is_src_c_contig && is_dst1_c_contig && is_dst2_c_contig);
261 if (contig_dispatch_vector[src_typeid] ==
nullptr) {
267template <
typename output_typesT,
typename contig_dispatchT>
268bool need_to_call_binary_ufunc(sycl::queue &exec_q,
269 const dpctl::tensor::usm_ndarray &src1,
270 const dpctl::tensor::usm_ndarray &src2,
271 const dpctl::tensor::usm_ndarray &dst,
272 const output_typesT &output_type_table,
273 const contig_dispatchT &contig_dispatch_table)
276 int src1_typenum = src1.get_typenum();
277 int src2_typenum = src2.get_typenum();
278 int dst_typenum = dst.get_typenum();
280 auto array_types = td_ns::usm_ndarray_types();
281 int src1_typeid = array_types.typenum_to_lookup_id(src1_typenum);
282 int src2_typeid = array_types.typenum_to_lookup_id(src2_typenum);
283 int dst_typeid = array_types.typenum_to_lookup_id(dst_typenum);
286 int output_typeid = output_type_table[src1_typeid][src2_typeid];
287 if (output_typeid != dst_typeid) {
292 if (src1_typeid != src2_typeid) {
297 if (!exec_q.get_device().has(sycl::aspect::fp64)) {
302 if (!dpctl::utils::queues_are_compatible(exec_q, {src1, src2, dst})) {
307 int dst_nd = dst.get_ndim();
308 if (dst_nd != src1.get_ndim() || dst_nd != src2.get_ndim()) {
311 else if (dst_nd == 0) {
317 const py::ssize_t *src1_shape = src1.get_shape_raw();
318 const py::ssize_t *src2_shape = src2.get_shape_raw();
319 const py::ssize_t *dst_shape = dst.get_shape_raw();
320 bool shapes_equal(
true);
321 size_t src_nelems(1);
323 for (
int i = 0; i < dst_nd; ++i) {
324 src_nelems *=
static_cast<size_t>(src1_shape[i]);
325 shapes_equal = shapes_equal && (src1_shape[i] == dst_shape[i] &&
326 src2_shape[i] == dst_shape[i]);
333 if (src_nelems == 0) {
338 auto dst_offsets = dst.get_minmax_offsets();
342 static_cast<size_t>(dst_offsets.second - dst_offsets.first);
343 if (range + 1 < src_nelems) {
349 auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
350 if (overlap(src1, dst) || overlap(src2, dst)) {
355 bool is_src1_c_contig = src1.is_c_contiguous();
356 bool is_src2_c_contig = src2.is_c_contiguous();
357 bool is_dst_c_contig = dst.is_c_contiguous();
360 (is_src1_c_contig && is_src2_c_contig && is_dst_c_contig);
366 if (contig_dispatch_table[src1_typeid] ==
nullptr) {
377#define MACRO_POPULATE_DISPATCH_VECTORS(__name__) \
378 template <typename fnT, typename T> \
379 struct ContigFactory \
383 if constexpr (std::is_same_v<typename OutputType<T>::value_type, \
388 return __name__##_contig_impl<T>; \
393 template <typename fnT, typename T> \
394 struct TypeMapFactory \
396 std::enable_if_t<std::is_same<fnT, int>::value, int> get() \
398 using rT = typename OutputType<T>::value_type; \
399 return td_ns::GetTypeid<rT>{}.get(); \
403 static void populate_dispatch_vectors(void) \
405 ext_ns::init_dispatch_vector<int, TypeMapFactory>( \
406 output_typeid_vector); \
407 ext_ns::init_dispatch_vector<unary_contig_impl_fn_ptr_t, \
408 ContigFactory>(contig_dispatch_vector); \
416#define MACRO_POPULATE_DISPATCH_2OUTS_VECTORS(__name__) \
417 template <typename fnT, typename T> \
418 struct ContigFactory \
422 if constexpr (std::is_same_v<typename OutputType<T>::value_type1, \
424 std::is_same_v<typename OutputType<T>::value_type2, \
431 fnT fn = __name__##_contig_impl<T>; \
437 template <typename fnT, typename T> \
438 struct TypeMapFactory \
440 std::enable_if_t<std::is_same<fnT, std::pair<int, int>>::value, \
441 std::pair<int, int>> \
444 using rT1 = typename OutputType<T>::value_type1; \
445 using rT2 = typename OutputType<T>::value_type2; \
446 return std::make_pair(td_ns::GetTypeid<rT1>{}.get(), \
447 td_ns::GetTypeid<rT2>{}.get()); \
451 static void populate_dispatch_vectors(void) \
453 ext_ns::init_dispatch_vector<std::pair<int, int>, TypeMapFactory>( \
454 output_typeid_vector); \
455 ext_ns::init_dispatch_vector<unary_two_outputs_contig_impl_fn_ptr_t, \
456 ContigFactory>(contig_dispatch_vector); \
464#define MACRO_POPULATE_DISPATCH_TABLES(__name__) \
465 template <typename fnT, typename T1, typename T2> \
466 struct ContigFactory \
470 if constexpr (std::is_same_v< \
471 typename OutputType<T1, T2>::value_type, void>) \
476 return __name__##_contig_impl<T1, T2>; \
481 template <typename fnT, typename T1, typename T2> \
482 struct TypeMapFactory \
484 std::enable_if_t<std::is_same<fnT, int>::value, int> get() \
486 using rT = typename OutputType<T1, T2>::value_type; \
487 return td_ns::GetTypeid<rT>{}.get(); \
491 static void populate_dispatch_tables(void) \
493 ext_ns::init_dispatch_table<int, TypeMapFactory>( \
494 output_typeid_vector); \
495 ext_ns::init_dispatch_table<binary_contig_impl_fn_ptr_t, \
496 ContigFactory>(contig_dispatch_vector); \