dpnp.vstack
- dpnp.vstack(tup, *, dtype=None, casting='same_kind')[source]
Stack arrays in sequence vertically (row wise).
dpnp.row_stackis an alias fordpnp.vstack. They are the same function.For full documentation refer to
numpy.vstack.- Parameters:
tup ({dpnp.ndarray, usm_ndarray}) -- The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length.
dtype ({None, str, dtype object}, optional) --
If provided, the destination array will have this dtype.
Default:
None.casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) --
Controls what kind of data casting may occur. Defaults to 'same_kind'.
Default:
"same_kind".
- Returns:
out -- The array formed by stacking the given arrays, will be at least 2-D.
- Return type:
dpnp.ndarray
See also
dpnp.concatenateJoin a sequence of arrays along an existing axis.
dpnp.stackJoin a sequence of arrays along a new axis.
dpnp.hstackStack arrays in sequence horizontally (column wise).
dpnp.dstackStack arrays in sequence depth wise (along third axis).
dpnp.column_stackStack 1-D arrays as columns into a 2-D array.
dpnp.blockAssemble an ndarray from nested lists of blocks.
dpnp.splitSplit array into a list of multiple sub-arrays of equal size.
dpnp.unstackSplit an array into a tuple of sub-arrays along an axis.
Examples
>>> import dpnp as np >>> a = np.array([1, 2, 3]) >>> b = np.array([4, 5, 6]) >>> np.vstack((a, b)) array([[1, 2, 3], [4, 5, 6]])
>>> a = np.array([[1], [2], [3]]) >>> b = np.array([[4], [5], [6]]) >>> np.vstack((a, b)) array([[1], [2], [3], [4], [5], [6]])