dpnp.greater_equal
- dpnp.greater_equal(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the greater-than or equal-to test results for each element \(x1_i\) of the input array x1 with the respective element \(x2_i\) of the input array x2.
For full documentation refer to
numpy.greater_equal.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, may have any data type.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also may have any data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None.Default:
"K".
- Returns:
out -- An array containing the result of element-wise greater-than or equal-to comparison.
- Return type:
dpnp.ndarray of bool dtype
Limitations
Parameters where and subok are supported with their default values. Otherwise
NotImplementedErrorexception will be raised.See also
dpnp.greaterReturn the truth value of (x1 > x2) element-wise.
dpnp.lessReturn the truth value of (x1 < x2) element-wise.
dpnp.less_equalReturn the truth value of (x1 =< x2) element-wise.
dpnp.equalReturn (x1 == x2) element-wise.
dpnp.not_equalReturn (x1 != x2) element-wise.
Notes
At least one of x1 or x2 must be an array.
If
x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).Examples
>>> import dpnp as np >>> x1 = np.array([4, 2, 1]) >>> x2 = np.array([2, 2, 2]) >>> np.greater_equal(x1, x2) array([ True, True, False])
The
>=operator can be used as a shorthand forgreater_equalondpnp.ndarray.>>> a = np.array([4, 2, 1]) >>> b = np.array([2, 2, 2]) >>> a >= b array([ True, True, False])