31#include <oneapi/mkl.hpp>
32#include <pybind11/pybind11.h>
35#include "utils/memory_overlap.hpp"
36#include "utils/output_validation.hpp"
37#include "utils/type_dispatch.hpp"
38#include "utils/type_utils.hpp"
40#include "types_matrix.hpp"
42namespace dpnp::extensions::blas::dot
44typedef sycl::event (*dot_impl_fn_ptr_t)(sycl::queue &,
51 const std::vector<sycl::event> &);
53namespace dpctl_td_ns = dpctl::tensor::type_dispatch;
54namespace py = pybind11;
56std::pair<sycl::event, sycl::event>
57 dot_func(sycl::queue &exec_q,
58 const dpctl::tensor::usm_ndarray &vectorX,
59 const dpctl::tensor::usm_ndarray &vectorY,
60 const dpctl::tensor::usm_ndarray &result,
61 const std::vector<sycl::event> &depends,
62 const dot_impl_fn_ptr_t *dot_dispatch_vector)
64 const int vectorX_nd = vectorX.get_ndim();
65 const int vectorY_nd = vectorY.get_ndim();
66 const int result_nd = result.get_ndim();
68 if ((vectorX_nd != 1)) {
69 throw py::value_error(
70 "The first input array has ndim=" + std::to_string(vectorX_nd) +
71 ", but a 1-dimensional array is expected.");
74 if ((vectorY_nd != 1)) {
75 throw py::value_error(
76 "The second input array has ndim=" + std::to_string(vectorY_nd) +
77 ", but a 1-dimensional array is expected.");
80 if ((result_nd != 0)) {
81 throw py::value_error(
82 "The output array has ndim=" + std::to_string(result_nd) +
83 ", but a 0-dimensional array is expected.");
86 auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
87 if (overlap(vectorX, result)) {
88 throw py::value_error(
89 "The first input array and output array are overlapping "
90 "segments of memory");
92 if (overlap(vectorY, result)) {
93 throw py::value_error(
94 "The second input array and output array are overlapping "
95 "segments of memory");
98 if (!dpctl::utils::queues_are_compatible(
100 {vectorX.get_queue(), vectorY.get_queue(), result.get_queue()}))
102 throw py::value_error(
103 "USM allocations are not compatible with the execution queue.");
106 const int src_nelems = 1;
107 dpctl::tensor::validation::CheckWritable::throw_if_not_writable(result);
108 dpctl::tensor::validation::AmpleMemory::throw_if_not_ample(result,
111 const py::ssize_t x_size = vectorX.get_size();
112 const py::ssize_t y_size = vectorY.get_size();
113 const std::int64_t n = x_size;
114 if (x_size != y_size) {
115 throw py::value_error(
"The size of the first input array must be "
116 "equal to the size of the second input array.");
119 const int vectorX_typenum = vectorX.get_typenum();
120 const int vectorY_typenum = vectorY.get_typenum();
121 const int result_typenum = result.get_typenum();
123 if (result_typenum != vectorX_typenum || result_typenum != vectorY_typenum)
125 throw py::value_error(
"Given arrays must be of the same type.");
128 auto array_types = dpctl_td_ns::usm_ndarray_types();
129 const int type_id = array_types.typenum_to_lookup_id(vectorX_typenum);
131 dot_impl_fn_ptr_t dot_fn = dot_dispatch_vector[type_id];
132 if (dot_fn ==
nullptr) {
133 throw py::value_error(
134 "No dot implementation is available for the specified data type "
135 "of the input and output arrays.");
138 char *x_typeless_ptr = vectorX.get_data();
139 char *y_typeless_ptr = vectorY.get_data();
140 char *r_typeless_ptr = result.get_data();
142 const std::vector<py::ssize_t> x_stride = vectorX.get_strides_vector();
143 const std::vector<py::ssize_t> y_stride = vectorY.get_strides_vector();
144 const int x_elemsize = vectorX.get_elemsize();
145 const int y_elemsize = vectorY.get_elemsize();
147 const std::int64_t incx = x_stride[0];
148 const std::int64_t incy = y_stride[0];
157 x_typeless_ptr -= (n - 1) * std::abs(incx) * x_elemsize;
160 y_typeless_ptr -= (n - 1) * std::abs(incy) * y_elemsize;
163 sycl::event dot_ev = dot_fn(exec_q, n, x_typeless_ptr, incx, y_typeless_ptr,
164 incy, r_typeless_ptr, depends);
166 sycl::event args_ev = dpctl::utils::keep_args_alive(
167 exec_q, {vectorX, vectorY, result}, {dot_ev});
169 return std::make_pair(args_ev, dot_ev);