27#include <oneapi/mkl.hpp> 
   28#include <pybind11/pybind11.h> 
   31#include "utils/memory_overlap.hpp" 
   32#include "utils/output_validation.hpp" 
   33#include "utils/type_dispatch.hpp" 
   35#include "common_helpers.hpp" 
   37namespace dpnp::extensions::lapack::gesvd_utils
 
   39namespace dpctl_td_ns = dpctl::tensor::type_dispatch;
 
   40namespace py = pybind11;
 
   44inline oneapi::mkl::jobsvd process_job(
const std::int8_t job_val)
 
   48        return oneapi::mkl::jobsvd::vectors;
 
   50        return oneapi::mkl::jobsvd::somevec;
 
   52        return oneapi::mkl::jobsvd::vectorsina;
 
   54        return oneapi::mkl::jobsvd::novec;
 
   56        throw std::invalid_argument(
"Unknown value for job");
 
   60inline void common_gesvd_checks(sycl::queue &exec_q,
 
   61                                const dpctl::tensor::usm_ndarray &a_array,
 
   62                                const dpctl::tensor::usm_ndarray &out_s,
 
   63                                const dpctl::tensor::usm_ndarray &out_u,
 
   64                                const dpctl::tensor::usm_ndarray &out_vt,
 
   65                                const std::int8_t jobu_val,
 
   66                                const std::int8_t jobvt_val,
 
   67                                const int expected_a_u_vt_ndim,
 
   68                                const int expected_s_ndim)
 
   70    const int a_array_nd = a_array.get_ndim();
 
   71    const int out_u_array_nd = out_u.get_ndim();
 
   72    const int out_s_array_nd = out_s.get_ndim();
 
   73    const int out_vt_array_nd = out_vt.get_ndim();
 
   75    if (a_array_nd != expected_a_u_vt_ndim) {
 
   76        throw py::value_error(
 
   77            "The input array has ndim=" + std::to_string(a_array_nd) +
 
   78            ", but a " + std::to_string(expected_a_u_vt_ndim) +
 
   79            "-dimensional array is expected.");
 
   82    if (out_s_array_nd != expected_s_ndim) {
 
   83        throw py::value_error(
"The output array of singular values has ndim=" +
 
   84                              std::to_string(out_s_array_nd) + 
", but a " +
 
   85                              std::to_string(expected_s_ndim) +
 
   86                              "-dimensional array is expected.");
 
   89    if (jobu_val == 
'N' && jobvt_val == 
'N') {
 
   90        if (out_u_array_nd != 0) {
 
   91            throw py::value_error(
 
   92                "The output array of the left singular vectors has ndim=" +
 
   93                std::to_string(out_u_array_nd) +
 
   94                ", but it is not used and should have ndim=0.");
 
   96        if (out_vt_array_nd != 0) {
 
   97            throw py::value_error(
 
   98                "The output array of the right singular vectors has ndim=" +
 
   99                std::to_string(out_vt_array_nd) +
 
  100                ", but it is not used and should have ndim=0.");
 
  104        if (out_u_array_nd != expected_a_u_vt_ndim) {
 
  105            throw py::value_error(
 
  106                "The output array of the left singular vectors has ndim=" +
 
  107                std::to_string(out_u_array_nd) + 
", but a " +
 
  108                std::to_string(expected_a_u_vt_ndim) +
 
  109                "-dimensional array is expected.");
 
  111        if (out_vt_array_nd != expected_a_u_vt_ndim) {
 
  112            throw py::value_error(
 
  113                "The output array of the right singular vectors has ndim=" +
 
  114                std::to_string(out_vt_array_nd) + 
", but a " +
 
  115                std::to_string(expected_a_u_vt_ndim) +
 
  116                "-dimensional array is expected.");
 
  121    if (!dpctl::utils::queues_are_compatible(exec_q,
 
  122                                             {a_array, out_s, out_u, out_vt}))
 
  124        throw py::value_error(
 
  125            "Execution queue is not compatible with allocation queues.");
 
  128    auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
 
  129    if (overlap(a_array, out_s) || overlap(a_array, out_u) ||
 
  130        overlap(a_array, out_vt) || overlap(out_s, out_u) ||
 
  131        overlap(out_s, out_vt) || overlap(out_u, out_vt))
 
  133        throw py::value_error(
"Arrays have overlapping segments of memory");
 
  136    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(a_array);
 
  137    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(out_s);
 
  138    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(out_u);
 
  139    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(out_vt);
 
  141    const bool is_a_array_f_contig = a_array.is_f_contiguous();
 
  142    if (!is_a_array_f_contig) {
 
  143        throw py::value_error(
"The input array must be F-contiguous");
 
  146    const bool is_out_u_array_f_contig = out_u.is_f_contiguous();
 
  147    const bool is_out_vt_array_f_contig = out_vt.is_f_contiguous();
 
  149    if (!is_out_u_array_f_contig || !is_out_vt_array_f_contig) {
 
  150        throw py::value_error(
"The output arrays of the left and right " 
  151                              "singular vectors must be F-contiguous");
 
  154    const bool is_out_s_array_c_contig = out_s.is_c_contiguous();
 
  156    if (!is_out_s_array_c_contig) {
 
  157        throw py::value_error(
"The output array of singular values " 
  158                              "must be C-contiguous");
 
  161    auto array_types = dpctl_td_ns::usm_ndarray_types();
 
  162    const int a_array_type_id =
 
  163        array_types.typenum_to_lookup_id(a_array.get_typenum());
 
  164    const int out_u_type_id =
 
  165        array_types.typenum_to_lookup_id(out_u.get_typenum());
 
  166    const int out_vt_type_id =
 
  167        array_types.typenum_to_lookup_id(out_vt.get_typenum());
 
  169    if (a_array_type_id != out_u_type_id || a_array_type_id != out_vt_type_id) {
 
  170        throw py::type_error(
 
  171            "Input array, output left singular vectors array, " 
  172            "and outpuy right singular vectors array must have " 
  173            "the same data type");
 
  178inline bool check_zeros_shape_gesvd(
const dpctl::tensor::usm_ndarray &a_array,
 
  179                                    const dpctl::tensor::usm_ndarray &out_s,
 
  180                                    const dpctl::tensor::usm_ndarray &out_u,
 
  181                                    const dpctl::tensor::usm_ndarray &out_vt,
 
  182                                    const std::int8_t jobu_val,
 
  183                                    const std::int8_t jobvt_val)
 
  186    const int a_array_nd = a_array.get_ndim();
 
  187    const int out_u_array_nd = out_u.get_ndim();
 
  188    const int out_s_array_nd = out_s.get_ndim();
 
  189    const int out_vt_array_nd = out_vt.get_ndim();
 
  191    const py::ssize_t *a_array_shape = a_array.get_shape_raw();
 
  192    const py::ssize_t *s_out_shape = out_s.get_shape_raw();
 
  193    const py::ssize_t *u_out_shape = out_u.get_shape_raw();
 
  194    const py::ssize_t *vt_out_shape = out_vt.get_shape_raw();
 
  196    bool is_zeros_shape = helper::check_zeros_shape(a_array_nd, a_array_shape);
 
  197    if (jobu_val == 
'N' && jobvt_val == 
'N') {
 
  198        is_zeros_shape = is_zeros_shape || helper::check_zeros_shape(
 
  199                                               out_vt_array_nd, vt_out_shape);
 
  204            helper::check_zeros_shape(out_u_array_nd, u_out_shape) ||
 
  205            helper::check_zeros_shape(out_s_array_nd, s_out_shape) ||
 
  206            helper::check_zeros_shape(out_vt_array_nd, vt_out_shape);
 
  209    return is_zeros_shape;
 
  212inline void handle_lapack_exc(
const std::int64_t scratchpad_size,
 
  213                              const oneapi::mkl::lapack::exception &e,
 
  214                              std::stringstream &error_msg)
 
  216    const std::int64_t info = e.info();
 
  218        error_msg << 
"Parameter number " << -info << 
" had an illegal value.";
 
  220    else if (info == scratchpad_size && e.detail() != 0) {
 
  221        error_msg << 
"Insufficient scratchpad size. Required size is at least " 
  225        error_msg << 
"The algorithm computing SVD failed to converge; " << info
 
  226                  << 
" off-diagonal elements of an intermediate " 
  227                  << 
"bidiagonal form did not converge to zero.\n";
 
  231            << 
"Unexpected MKL exception caught during gesv() call:\nreason: " 
  232            << e.what() << 
"\ninfo: " << e.info();