31#include <sycl/sycl.hpp> 
   33#include "dpctl4pybind11.hpp" 
   34#include <pybind11/numpy.h> 
   35#include <pybind11/pybind11.h> 
   36#include <pybind11/stl.h> 
   38#include "elementwise_functions_type_utils.hpp" 
   39#include "simplify_iteration_space.hpp" 
   42#include "kernels/alignment.hpp" 
   44#include "utils/memory_overlap.hpp" 
   45#include "utils/offset_utils.hpp" 
   46#include "utils/output_validation.hpp" 
   47#include "utils/sycl_alloc_utils.hpp" 
   48#include "utils/type_dispatch.hpp" 
   50namespace py = pybind11;
 
   51namespace td_ns = dpctl::tensor::type_dispatch;
 
   53static_assert(std::is_same_v<py::ssize_t, dpctl::tensor::ssize_t>);
 
   55namespace dpnp::extensions::py_internal
 
   58using dpctl::tensor::kernels::alignment_utils::is_aligned;
 
   59using dpctl::tensor::kernels::alignment_utils::required_alignment;
 
   62template <
typename output_typesT,
 
   63          typename contig_dispatchT,
 
   64          typename strided_dispatchT>
 
   65std::pair<sycl::event, sycl::event>
 
   66    py_unary_ufunc(
const dpctl::tensor::usm_ndarray &src,
 
   67                   const dpctl::tensor::usm_ndarray &dst,
 
   69                   const std::vector<sycl::event> &depends,
 
   71                   const output_typesT &output_type_vec,
 
   72                   const contig_dispatchT &contig_dispatch_vector,
 
   73                   const strided_dispatchT &strided_dispatch_vector)
 
   75    int src_typenum = src.get_typenum();
 
   76    int dst_typenum = dst.get_typenum();
 
   78    const auto &array_types = td_ns::usm_ndarray_types();
 
   79    int src_typeid = array_types.typenum_to_lookup_id(src_typenum);
 
   80    int dst_typeid = array_types.typenum_to_lookup_id(dst_typenum);
 
   82    int func_output_typeid = output_type_vec[src_typeid];
 
   85    if (dst_typeid != func_output_typeid) {
 
   86        throw py::value_error(
 
   87            "Destination array has unexpected elemental data type.");
 
   91    if (!dpctl::utils::queues_are_compatible(q, {src, dst})) {
 
   92        throw py::value_error(
 
   93            "Execution queue is not compatible with allocation queues");
 
   96    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(dst);
 
   99    int src_nd = src.get_ndim();
 
  100    if (src_nd != dst.get_ndim()) {
 
  101        throw py::value_error(
"Array dimensions are not the same.");
 
  105    const py::ssize_t *src_shape = src.get_shape_raw();
 
  106    const py::ssize_t *dst_shape = dst.get_shape_raw();
 
  107    bool shapes_equal(
true);
 
  108    size_t src_nelems(1);
 
  110    for (
int i = 0; i < src_nd; ++i) {
 
  111        src_nelems *= 
static_cast<size_t>(src_shape[i]);
 
  112        shapes_equal = shapes_equal && (src_shape[i] == dst_shape[i]);
 
  115        throw py::value_error(
"Array shapes are not the same.");
 
  119    if (src_nelems == 0) {
 
  120        return std::make_pair(sycl::event(), sycl::event());
 
  123    dpctl::tensor::validation::AmpleMemory::throw_if_not_ample(dst, src_nelems);
 
  126    auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
 
  127    auto const &same_logical_tensors =
 
  128        dpctl::tensor::overlap::SameLogicalTensors();
 
  129    if (overlap(src, dst) && !same_logical_tensors(src, dst)) {
 
  130        throw py::value_error(
"Arrays index overlapping segments of memory");
 
  133    const char *src_data = src.get_data();
 
  134    char *dst_data = dst.get_data();
 
  137    bool is_src_c_contig = src.is_c_contiguous();
 
  138    bool is_src_f_contig = src.is_f_contiguous();
 
  140    bool is_dst_c_contig = dst.is_c_contiguous();
 
  141    bool is_dst_f_contig = dst.is_f_contiguous();
 
  143    bool both_c_contig = (is_src_c_contig && is_dst_c_contig);
 
  144    bool both_f_contig = (is_src_f_contig && is_dst_f_contig);
 
  146    if (both_c_contig || both_f_contig) {
 
  147        auto contig_fn = contig_dispatch_vector[src_typeid];
 
  149        if (contig_fn == 
nullptr) {
 
  150            throw std::runtime_error(
 
  151                "Contiguous implementation is missing for src_typeid=" +
 
  152                std::to_string(src_typeid));
 
  155        auto comp_ev = contig_fn(q, src_nelems, src_data, dst_data, depends);
 
  157            dpctl::utils::keep_args_alive(q, {src, dst}, {comp_ev});
 
  159        return std::make_pair(ht_ev, comp_ev);
 
  166    auto const &src_strides = src.get_strides_vector();
 
  167    auto const &dst_strides = dst.get_strides_vector();
 
  169    using shT = std::vector<py::ssize_t>;
 
  170    shT simplified_shape;
 
  171    shT simplified_src_strides;
 
  172    shT simplified_dst_strides;
 
  173    py::ssize_t src_offset(0);
 
  174    py::ssize_t dst_offset(0);
 
  177    const py::ssize_t *shape = src_shape;
 
  179    simplify_iteration_space(nd, shape, src_strides, dst_strides,
 
  181                             simplified_shape, simplified_src_strides,
 
  182                             simplified_dst_strides, src_offset, dst_offset);
 
  184    if (nd == 1 && simplified_src_strides[0] == 1 &&
 
  185        simplified_dst_strides[0] == 1) {
 
  187        auto contig_fn = contig_dispatch_vector[src_typeid];
 
  189        if (contig_fn == 
nullptr) {
 
  190            throw std::runtime_error(
 
  191                "Contiguous implementation is missing for src_typeid=" +
 
  192                std::to_string(src_typeid));
 
  195        int src_elem_size = src.get_elemsize();
 
  196        int dst_elem_size = dst.get_elemsize();
 
  198            contig_fn(q, src_nelems, src_data + src_elem_size * src_offset,
 
  199                      dst_data + dst_elem_size * dst_offset, depends);
 
  202            dpctl::utils::keep_args_alive(q, {src, dst}, {comp_ev});
 
  204        return std::make_pair(ht_ev, comp_ev);
 
  208    auto strided_fn = strided_dispatch_vector[src_typeid];
 
  210    if (strided_fn == 
nullptr) {
 
  211        throw std::runtime_error(
 
  212            "Strided implementation is missing for src_typeid=" +
 
  213            std::to_string(src_typeid));
 
  216    using dpctl::tensor::offset_utils::device_allocate_and_pack;
 
  218    std::vector<sycl::event> host_tasks{};
 
  219    host_tasks.reserve(2);
 
  221    auto ptr_size_event_triple_ = device_allocate_and_pack<py::ssize_t>(
 
  222        q, host_tasks, simplified_shape, simplified_src_strides,
 
  223        simplified_dst_strides);
 
  224    auto shape_strides_owner = std::move(std::get<0>(ptr_size_event_triple_));
 
  225    const auto ©_shape_ev = std::get<2>(ptr_size_event_triple_);
 
  226    const py::ssize_t *shape_strides = shape_strides_owner.get();
 
  228    sycl::event strided_fn_ev =
 
  229        strided_fn(q, src_nelems, nd, shape_strides, src_data, src_offset,
 
  230                   dst_data, dst_offset, depends, {copy_shape_ev});
 
  233    sycl::event tmp_cleanup_ev = dpctl::tensor::alloc_utils::async_smart_free(
 
  234        q, {strided_fn_ev}, shape_strides_owner);
 
  236    host_tasks.push_back(tmp_cleanup_ev);
 
  238    return std::make_pair(
 
  239        dpctl::utils::keep_args_alive(q, {src, dst}, host_tasks),
 
  245template <
typename output_typesT>
 
  246py::object py_unary_ufunc_result_type(
const py::dtype &input_dtype,
 
  247                                      const output_typesT &output_types)
 
  249    int tn = input_dtype.num(); 
 
  252    auto array_types = td_ns::usm_ndarray_types();
 
  255        src_typeid = array_types.typenum_to_lookup_id(tn);
 
  256    } 
catch (
const std::exception &e) {
 
  257        throw py::value_error(e.what());
 
  260    using type_utils::_result_typeid;
 
  261    int dst_typeid = _result_typeid(src_typeid, output_types);
 
  263    if (dst_typeid < 0) {
 
  264        auto res = py::none();
 
  265        return py::cast<py::object>(res);
 
  268        using type_utils::_dtype_from_typenum;
 
  270        auto dst_typenum_t = 
static_cast<td_ns::typenum_t
>(dst_typeid);
 
  271        auto dt = _dtype_from_typenum(dst_typenum_t);
 
  273        return py::cast<py::object>(dt);
 
  281template <
class Container, 
class T>
 
  282bool isEqual(Container 
const &c, std::initializer_list<T> 
const &l)
 
  284    return std::equal(std::begin(c), std::end(c), std::begin(l), std::end(l));
 
  290template <
typename output_typesT,
 
  291          typename contig_dispatchT,
 
  292          typename strided_dispatchT,
 
  293          typename contig_matrix_row_dispatchT,
 
  294          typename contig_row_matrix_dispatchT>
 
  295std::pair<sycl::event, sycl::event> py_binary_ufunc(
 
  296    const dpctl::tensor::usm_ndarray &src1,
 
  297    const dpctl::tensor::usm_ndarray &src2,
 
  298    const dpctl::tensor::usm_ndarray &dst, 
 
  300    const std::vector<sycl::event> depends,
 
  302    const output_typesT &output_type_table,
 
  303    const contig_dispatchT &contig_dispatch_table,
 
  304    const strided_dispatchT &strided_dispatch_table,
 
  305    const contig_matrix_row_dispatchT
 
  306        &contig_matrix_row_broadcast_dispatch_table,
 
  307    const contig_row_matrix_dispatchT
 
  308        &contig_row_matrix_broadcast_dispatch_table)
 
  311    int src1_typenum = src1.get_typenum();
 
  312    int src2_typenum = src2.get_typenum();
 
  313    int dst_typenum = dst.get_typenum();
 
  315    auto array_types = td_ns::usm_ndarray_types();
 
  316    int src1_typeid = array_types.typenum_to_lookup_id(src1_typenum);
 
  317    int src2_typeid = array_types.typenum_to_lookup_id(src2_typenum);
 
  318    int dst_typeid = array_types.typenum_to_lookup_id(dst_typenum);
 
  320    int output_typeid = output_type_table[src1_typeid][src2_typeid];
 
  322    if (output_typeid != dst_typeid) {
 
  323        throw py::value_error(
 
  324            "Destination array has unexpected elemental data type.");
 
  328    if (!dpctl::utils::queues_are_compatible(exec_q, {src1, src2, dst})) {
 
  329        throw py::value_error(
 
  330            "Execution queue is not compatible with allocation queues");
 
  333    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(dst);
 
  337    int dst_nd = dst.get_ndim();
 
  338    if (dst_nd != src1.get_ndim() || dst_nd != src2.get_ndim()) {
 
  339        throw py::value_error(
"Array dimensions are not the same.");
 
  343    const py::ssize_t *src1_shape = src1.get_shape_raw();
 
  344    const py::ssize_t *src2_shape = src2.get_shape_raw();
 
  345    const py::ssize_t *dst_shape = dst.get_shape_raw();
 
  346    bool shapes_equal(
true);
 
  347    size_t src_nelems(1);
 
  349    for (
int i = 0; i < dst_nd; ++i) {
 
  350        src_nelems *= 
static_cast<size_t>(src1_shape[i]);
 
  351        shapes_equal = shapes_equal && (src1_shape[i] == dst_shape[i] &&
 
  352                                        src2_shape[i] == dst_shape[i]);
 
  355        throw py::value_error(
"Array shapes are not the same.");
 
  359    if (src_nelems == 0) {
 
  360        return std::make_pair(sycl::event(), sycl::event());
 
  363    dpctl::tensor::validation::AmpleMemory::throw_if_not_ample(dst, src_nelems);
 
  365    auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
 
  366    auto const &same_logical_tensors =
 
  367        dpctl::tensor::overlap::SameLogicalTensors();
 
  368    if ((overlap(src1, dst) && !same_logical_tensors(src1, dst)) ||
 
  369        (overlap(src2, dst) && !same_logical_tensors(src2, dst)))
 
  371        throw py::value_error(
"Arrays index overlapping segments of memory");
 
  374    const char *src1_data = src1.get_data();
 
  375    const char *src2_data = src2.get_data();
 
  376    char *dst_data = dst.get_data();
 
  379    bool is_src1_c_contig = src1.is_c_contiguous();
 
  380    bool is_src1_f_contig = src1.is_f_contiguous();
 
  382    bool is_src2_c_contig = src2.is_c_contiguous();
 
  383    bool is_src2_f_contig = src2.is_f_contiguous();
 
  385    bool is_dst_c_contig = dst.is_c_contiguous();
 
  386    bool is_dst_f_contig = dst.is_f_contiguous();
 
  389        (is_src1_c_contig && is_src2_c_contig && is_dst_c_contig);
 
  391        (is_src1_f_contig && is_src2_f_contig && is_dst_f_contig);
 
  394    if (all_c_contig || all_f_contig) {
 
  395        auto contig_fn = contig_dispatch_table[src1_typeid][src2_typeid];
 
  397        if (contig_fn != 
nullptr) {
 
  398            auto comp_ev = contig_fn(exec_q, src_nelems, src1_data, 0,
 
  399                                     src2_data, 0, dst_data, 0, depends);
 
  400            sycl::event ht_ev = dpctl::utils::keep_args_alive(
 
  401                exec_q, {src1, src2, dst}, {comp_ev});
 
  403            return std::make_pair(ht_ev, comp_ev);
 
  408    auto const &src1_strides = src1.get_strides_vector();
 
  409    auto const &src2_strides = src2.get_strides_vector();
 
  410    auto const &dst_strides = dst.get_strides_vector();
 
  412    using shT = std::vector<py::ssize_t>;
 
  413    shT simplified_shape;
 
  414    shT simplified_src1_strides;
 
  415    shT simplified_src2_strides;
 
  416    shT simplified_dst_strides;
 
  417    py::ssize_t src1_offset(0);
 
  418    py::ssize_t src2_offset(0);
 
  419    py::ssize_t dst_offset(0);
 
  422    const py::ssize_t *shape = src1_shape;
 
  424    simplify_iteration_space_3(
 
  425        nd, shape, src1_strides, src2_strides, dst_strides,
 
  427        simplified_shape, simplified_src1_strides, simplified_src2_strides,
 
  428        simplified_dst_strides, src1_offset, src2_offset, dst_offset);
 
  430    std::vector<sycl::event> host_tasks{};
 
  432        static constexpr auto unit_stride =
 
  433            std::initializer_list<py::ssize_t>{1};
 
  435        if ((nd == 1) && isEqual(simplified_src1_strides, unit_stride) &&
 
  436            isEqual(simplified_src2_strides, unit_stride) &&
 
  437            isEqual(simplified_dst_strides, unit_stride))
 
  439            auto contig_fn = contig_dispatch_table[src1_typeid][src2_typeid];
 
  441            if (contig_fn != 
nullptr) {
 
  442                auto comp_ev = contig_fn(exec_q, src_nelems, src1_data,
 
  443                                         src1_offset, src2_data, src2_offset,
 
  444                                         dst_data, dst_offset, depends);
 
  445                sycl::event ht_ev = dpctl::utils::keep_args_alive(
 
  446                    exec_q, {src1, src2, dst}, {comp_ev});
 
  448                return std::make_pair(ht_ev, comp_ev);
 
  452            static constexpr auto zero_one_strides =
 
  453                std::initializer_list<py::ssize_t>{0, 1};
 
  454            static constexpr auto one_zero_strides =
 
  455                std::initializer_list<py::ssize_t>{1, 0};
 
  456            constexpr py::ssize_t one{1};
 
  458            if (isEqual(simplified_src2_strides, zero_one_strides) &&
 
  459                isEqual(simplified_src1_strides, {simplified_shape[1], one}) &&
 
  460                isEqual(simplified_dst_strides, {simplified_shape[1], one}))
 
  462                auto matrix_row_broadcast_fn =
 
  463                    contig_matrix_row_broadcast_dispatch_table[src1_typeid]
 
  465                if (matrix_row_broadcast_fn != 
nullptr) {
 
  466                    int src1_itemsize = src1.get_elemsize();
 
  467                    int src2_itemsize = src2.get_elemsize();
 
  468                    int dst_itemsize = dst.get_elemsize();
 
  470                    if (is_aligned<required_alignment>(
 
  471                            src1_data + src1_offset * src1_itemsize) &&
 
  472                        is_aligned<required_alignment>(
 
  473                            src2_data + src2_offset * src2_itemsize) &&
 
  474                        is_aligned<required_alignment>(
 
  475                            dst_data + dst_offset * dst_itemsize))
 
  477                        size_t n0 = simplified_shape[0];
 
  478                        size_t n1 = simplified_shape[1];
 
  479                        sycl::event comp_ev = matrix_row_broadcast_fn(
 
  480                            exec_q, host_tasks, n0, n1, src1_data, src1_offset,
 
  481                            src2_data, src2_offset, dst_data, dst_offset,
 
  484                        return std::make_pair(
 
  485                            dpctl::utils::keep_args_alive(
 
  486                                exec_q, {src1, src2, dst}, host_tasks),
 
  491            if (isEqual(simplified_src1_strides, one_zero_strides) &&
 
  492                isEqual(simplified_src2_strides, {one, simplified_shape[0]}) &&
 
  493                isEqual(simplified_dst_strides, {one, simplified_shape[0]}))
 
  495                auto row_matrix_broadcast_fn =
 
  496                    contig_row_matrix_broadcast_dispatch_table[src1_typeid]
 
  498                if (row_matrix_broadcast_fn != 
nullptr) {
 
  500                    int src1_itemsize = src1.get_elemsize();
 
  501                    int src2_itemsize = src2.get_elemsize();
 
  502                    int dst_itemsize = dst.get_elemsize();
 
  504                    if (is_aligned<required_alignment>(
 
  505                            src1_data + src1_offset * src1_itemsize) &&
 
  506                        is_aligned<required_alignment>(
 
  507                            src2_data + src2_offset * src2_itemsize) &&
 
  508                        is_aligned<required_alignment>(
 
  509                            dst_data + dst_offset * dst_itemsize))
 
  511                        size_t n0 = simplified_shape[1];
 
  512                        size_t n1 = simplified_shape[0];
 
  513                        sycl::event comp_ev = row_matrix_broadcast_fn(
 
  514                            exec_q, host_tasks, n0, n1, src1_data, src1_offset,
 
  515                            src2_data, src2_offset, dst_data, dst_offset,
 
  518                        return std::make_pair(
 
  519                            dpctl::utils::keep_args_alive(
 
  520                                exec_q, {src1, src2, dst}, host_tasks),
 
  529    auto strided_fn = strided_dispatch_table[src1_typeid][src2_typeid];
 
  531    if (strided_fn == 
nullptr) {
 
  532        throw std::runtime_error(
 
  533            "Strided implementation is missing for src1_typeid=" +
 
  534            std::to_string(src1_typeid) +
 
  535            " and src2_typeid=" + std::to_string(src2_typeid));
 
  538    using dpctl::tensor::offset_utils::device_allocate_and_pack;
 
  539    auto ptr_sz_event_triple_ = device_allocate_and_pack<py::ssize_t>(
 
  540        exec_q, host_tasks, simplified_shape, simplified_src1_strides,
 
  541        simplified_src2_strides, simplified_dst_strides);
 
  542    auto shape_strides_owner = std::move(std::get<0>(ptr_sz_event_triple_));
 
  543    auto ©_shape_ev = std::get<2>(ptr_sz_event_triple_);
 
  545    const py::ssize_t *shape_strides = shape_strides_owner.get();
 
  547    sycl::event strided_fn_ev = strided_fn(
 
  548        exec_q, src_nelems, nd, shape_strides, src1_data, src1_offset,
 
  549        src2_data, src2_offset, dst_data, dst_offset, depends, {copy_shape_ev});
 
  552    sycl::event tmp_cleanup_ev = dpctl::tensor::alloc_utils::async_smart_free(
 
  553        exec_q, {strided_fn_ev}, shape_strides_owner);
 
  555    host_tasks.push_back(tmp_cleanup_ev);
 
  557    return std::make_pair(
 
  558        dpctl::utils::keep_args_alive(exec_q, {src1, src2, dst}, host_tasks),
 
  563template <
typename output_typesT>
 
  564py::object py_binary_ufunc_result_type(
const py::dtype &input1_dtype,
 
  565                                       const py::dtype &input2_dtype,
 
  566                                       const output_typesT &output_types_table)
 
  568    int tn1 = input1_dtype.num(); 
 
  569    int tn2 = input2_dtype.num(); 
 
  570    int src1_typeid = -1;
 
  571    int src2_typeid = -1;
 
  573    auto array_types = td_ns::usm_ndarray_types();
 
  576        src1_typeid = array_types.typenum_to_lookup_id(tn1);
 
  577        src2_typeid = array_types.typenum_to_lookup_id(tn2);
 
  578    } 
catch (
const std::exception &e) {
 
  579        throw py::value_error(e.what());
 
  582    if (src1_typeid < 0 || src1_typeid >= td_ns::num_types || src2_typeid < 0 ||
 
  583        src2_typeid >= td_ns::num_types)
 
  585        throw std::runtime_error(
"binary output type lookup failed");
 
  587    int dst_typeid = output_types_table[src1_typeid][src2_typeid];
 
  589    if (dst_typeid < 0) {
 
  590        auto res = py::none();
 
  591        return py::cast<py::object>(res);
 
  594        using type_utils::_dtype_from_typenum;
 
  596        auto dst_typenum_t = 
static_cast<td_ns::typenum_t
>(dst_typeid);
 
  597        auto dt = _dtype_from_typenum(dst_typenum_t);
 
  599        return py::cast<py::object>(dt);
 
  605template <
typename output_typesT,
 
  606          typename contig_dispatchT,
 
  607          typename strided_dispatchT,
 
  608          typename contig_row_matrix_dispatchT>
 
  609std::pair<sycl::event, sycl::event>
 
  610    py_binary_inplace_ufunc(
const dpctl::tensor::usm_ndarray &lhs,
 
  611                            const dpctl::tensor::usm_ndarray &rhs,
 
  613                            const std::vector<sycl::event> depends,
 
  615                            const output_typesT &output_type_table,
 
  616                            const contig_dispatchT &contig_dispatch_table,
 
  617                            const strided_dispatchT &strided_dispatch_table,
 
  618                            const contig_row_matrix_dispatchT
 
  619                                &contig_row_matrix_broadcast_dispatch_table)
 
  621    dpctl::tensor::validation::CheckWritable::throw_if_not_writable(lhs);
 
  624    int rhs_typenum = rhs.get_typenum();
 
  625    int lhs_typenum = lhs.get_typenum();
 
  627    auto array_types = td_ns::usm_ndarray_types();
 
  628    int rhs_typeid = array_types.typenum_to_lookup_id(rhs_typenum);
 
  629    int lhs_typeid = array_types.typenum_to_lookup_id(lhs_typenum);
 
  631    int output_typeid = output_type_table[rhs_typeid][lhs_typeid];
 
  633    if (output_typeid != lhs_typeid) {
 
  634        throw py::value_error(
 
  635            "Left-hand side array has unexpected elemental data type.");
 
  639    if (!dpctl::utils::queues_are_compatible(exec_q, {rhs, lhs})) {
 
  640        throw py::value_error(
 
  641            "Execution queue is not compatible with allocation queues");
 
  646    int lhs_nd = lhs.get_ndim();
 
  647    if (lhs_nd != rhs.get_ndim()) {
 
  648        throw py::value_error(
"Array dimensions are not the same.");
 
  652    const py::ssize_t *rhs_shape = rhs.get_shape_raw();
 
  653    const py::ssize_t *lhs_shape = lhs.get_shape_raw();
 
  654    bool shapes_equal(
true);
 
  655    size_t rhs_nelems(1);
 
  657    for (
int i = 0; i < lhs_nd; ++i) {
 
  658        rhs_nelems *= 
static_cast<size_t>(rhs_shape[i]);
 
  659        shapes_equal = shapes_equal && (rhs_shape[i] == lhs_shape[i]);
 
  662        throw py::value_error(
"Array shapes are not the same.");
 
  666    if (rhs_nelems == 0) {
 
  667        return std::make_pair(sycl::event(), sycl::event());
 
  670    dpctl::tensor::validation::AmpleMemory::throw_if_not_ample(lhs, rhs_nelems);
 
  673    auto const &same_logical_tensors =
 
  674        dpctl::tensor::overlap::SameLogicalTensors();
 
  675    auto const &overlap = dpctl::tensor::overlap::MemoryOverlap();
 
  676    if (overlap(rhs, lhs) && !same_logical_tensors(rhs, lhs)) {
 
  677        throw py::value_error(
"Arrays index overlapping segments of memory");
 
  680    const char *rhs_data = rhs.get_data();
 
  681    char *lhs_data = lhs.get_data();
 
  684    bool is_rhs_c_contig = rhs.is_c_contiguous();
 
  685    bool is_rhs_f_contig = rhs.is_f_contiguous();
 
  687    bool is_lhs_c_contig = lhs.is_c_contiguous();
 
  688    bool is_lhs_f_contig = lhs.is_f_contiguous();
 
  690    bool both_c_contig = (is_rhs_c_contig && is_lhs_c_contig);
 
  691    bool both_f_contig = (is_rhs_f_contig && is_lhs_f_contig);
 
  694    if (both_c_contig || both_f_contig) {
 
  695        auto contig_fn = contig_dispatch_table[rhs_typeid][lhs_typeid];
 
  697        if (contig_fn != 
nullptr) {
 
  698            auto comp_ev = contig_fn(exec_q, rhs_nelems, rhs_data, 0, lhs_data,
 
  701                dpctl::utils::keep_args_alive(exec_q, {rhs, lhs}, {comp_ev});
 
  703            return std::make_pair(ht_ev, comp_ev);
 
  708    auto const &rhs_strides = rhs.get_strides_vector();
 
  709    auto const &lhs_strides = lhs.get_strides_vector();
 
  711    using shT = std::vector<py::ssize_t>;
 
  712    shT simplified_shape;
 
  713    shT simplified_rhs_strides;
 
  714    shT simplified_lhs_strides;
 
  715    py::ssize_t rhs_offset(0);
 
  716    py::ssize_t lhs_offset(0);
 
  719    const py::ssize_t *shape = rhs_shape;
 
  721    simplify_iteration_space(nd, shape, rhs_strides, lhs_strides,
 
  723                             simplified_shape, simplified_rhs_strides,
 
  724                             simplified_lhs_strides, rhs_offset, lhs_offset);
 
  726    std::vector<sycl::event> host_tasks{};
 
  728        static constexpr auto unit_stride =
 
  729            std::initializer_list<py::ssize_t>{1};
 
  731        if ((nd == 1) && isEqual(simplified_rhs_strides, unit_stride) &&
 
  732            isEqual(simplified_lhs_strides, unit_stride))
 
  734            auto contig_fn = contig_dispatch_table[rhs_typeid][lhs_typeid];
 
  736            if (contig_fn != 
nullptr) {
 
  738                    contig_fn(exec_q, rhs_nelems, rhs_data, rhs_offset,
 
  739                              lhs_data, lhs_offset, depends);
 
  740                sycl::event ht_ev = dpctl::utils::keep_args_alive(
 
  741                    exec_q, {rhs, lhs}, {comp_ev});
 
  743                return std::make_pair(ht_ev, comp_ev);
 
  747            static constexpr auto one_zero_strides =
 
  748                std::initializer_list<py::ssize_t>{1, 0};
 
  749            constexpr py::ssize_t one{1};
 
  751            if (isEqual(simplified_rhs_strides, one_zero_strides) &&
 
  752                isEqual(simplified_lhs_strides, {one, simplified_shape[0]}))
 
  754                auto row_matrix_broadcast_fn =
 
  755                    contig_row_matrix_broadcast_dispatch_table[rhs_typeid]
 
  757                if (row_matrix_broadcast_fn != 
nullptr) {
 
  758                    size_t n0 = simplified_shape[1];
 
  759                    size_t n1 = simplified_shape[0];
 
  760                    sycl::event comp_ev = row_matrix_broadcast_fn(
 
  761                        exec_q, host_tasks, n0, n1, rhs_data, rhs_offset,
 
  762                        lhs_data, lhs_offset, depends);
 
  764                    return std::make_pair(dpctl::utils::keep_args_alive(
 
  765                                              exec_q, {lhs, rhs}, host_tasks),
 
  773    auto strided_fn = strided_dispatch_table[rhs_typeid][lhs_typeid];
 
  775    if (strided_fn == 
nullptr) {
 
  776        throw std::runtime_error(
 
  777            "Strided implementation is missing for rhs_typeid=" +
 
  778            std::to_string(rhs_typeid) +
 
  779            " and lhs_typeid=" + std::to_string(lhs_typeid));
 
  782    using dpctl::tensor::offset_utils::device_allocate_and_pack;
 
  783    auto ptr_sz_event_triple_ = device_allocate_and_pack<py::ssize_t>(
 
  784        exec_q, host_tasks, simplified_shape, simplified_rhs_strides,
 
  785        simplified_lhs_strides);
 
  786    auto shape_strides_owner = std::move(std::get<0>(ptr_sz_event_triple_));
 
  787    auto copy_shape_ev = std::get<2>(ptr_sz_event_triple_);
 
  789    const py::ssize_t *shape_strides = shape_strides_owner.get();
 
  791    sycl::event strided_fn_ev =
 
  792        strided_fn(exec_q, rhs_nelems, nd, shape_strides, rhs_data, rhs_offset,
 
  793                   lhs_data, lhs_offset, depends, {copy_shape_ev});
 
  796    sycl::event tmp_cleanup_ev = dpctl::tensor::alloc_utils::async_smart_free(
 
  797        exec_q, {strided_fn_ev}, shape_strides_owner);
 
  799    host_tasks.push_back(tmp_cleanup_ev);
 
  801    return std::make_pair(
 
  802        dpctl::utils::keep_args_alive(exec_q, {rhs, lhs}, host_tasks),