dpnp.isin
- dpnp.isin(element, test_elements, assume_unique=False, invert=False)[source]
Calculates
element in test_elements
, broadcasting over element only. Returns a boolean array of the same shape as element that is True where an element of element is in test_elements and False otherwise.- Parameters:
element ({array_like, dpnp.ndarray, usm_ndarray}) -- Input array.
test_elements ({array_like, dpnp.ndarray, usm_ndarray}) -- The values against which to test each value of element. This argument is flattened if it is an array or array_like. See notes for behavior with non-array-like parameters.
assume_unique (bool, optional) -- Ignored
invert (bool, optional) -- If True, the values in the returned array are inverted, as if calculating element not in test_elements. Default is False.
dpnp.isin(a, b, invert=True)
is equivalent to (but faster than)dpnp.invert(dpnp.isin(a, b))
.
- Returns:
isin -- Has the same shape as element. The values element[isin] are in test_elements.
- Return type:
dpnp.ndarray of bool dtype
Examples
>>> import dpnp as np >>> element = 2*np.arange(4).reshape((2, 2)) >>> element array([[0, 2], [4, 6]]) >>> test_elements = [1, 2, 4, 8] >>> mask = np.isin(element, test_elements) >>> mask array([[False, True], [ True, False]]) >>> element[mask] array([2, 4])
The indices of the matched values can be obtained with nonzero:
>>> np.nonzero(mask) (array([0, 1]), array([1, 0]))
The test can also be inverted:
>>> mask = np.isin(element, test_elements, invert=True) >>> mask array([[ True, False], [False, True]]) >>> element[mask] array([0, 6])