dpnp.special.erf

dpnp.special.erf(x, out=None)

Returns the error function of complex argument.

It is defined as \(\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2} \, dt\).

For full documentation refer to scipy.special.erf.

Parameters:
  • x ({dpnp.ndarray, usm_ndarray}) -- Input array.

  • out ({dpnp.ndarray, usm_ndarray}, optional) -- Optional output array for the function values.

See also

dpnp.special.erfc

Complementary error function.

dpnp.special.erfinv

Inverse of the error function.

dpnp.special.erfcinv

Inverse of the complementary error function.

dpnp.special.erfcx

Scaled complementary error function.

dpnp.special.erfi

Imaginary error function.

Notes

The cumulative of the unit normal distribution is given by

\[\Phi(z) = \frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{z}{\sqrt{2}} \right) \right]\]

Examples

>>> import dpnp as np
>>> x = np.linspace(-3, 3, num=5)
>>> np.special.erf(x)
array([[-0.99997791, -0.96610515,  0.        ,  0.96610515,  0.99997791])