dpnp.special.erf
- dpnp.special.erf(x, out=None)
Returns the error function of complex argument.
It is defined as \(\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2} \, dt\).
For full documentation refer to
scipy.special.erf
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array.
out ({dpnp.ndarray, usm_ndarray}, optional) -- Optional output array for the function values.
See also
dpnp.special.erfc
Complementary error function.
dpnp.special.erfinv
Inverse of the error function.
dpnp.special.erfcinv
Inverse of the complementary error function.
dpnp.special.erfcx
Scaled complementary error function.
dpnp.special.erfi
Imaginary error function.
Notes
The cumulative of the unit normal distribution is given by
\[\Phi(z) = \frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{z}{\sqrt{2}} \right) \right]\]Examples
>>> import dpnp as np >>> x = np.linspace(-3, 3, num=5) >>> np.special.erf(x) array([[-0.99997791, -0.96610515, 0. , 0.96610515, 0.99997791])