dpnp.ndarray.view
method
- ndarray.view(dtype=None, *, type=None)
New view of array with the same data.
For full documentation refer to
numpy.ndarray.view
.- Parameters:
dtype ({None, str, dtype object}, optional) --
The desired data type of the returned view, e.g.
dpnp.float32
ordpnp.int16
. By default, it results in the view having the same data type.Default:
None
.
Notes
Passing
None
for dtype is the same as omitting the parameter, opposite to NumPy where they have different meaning.view(some_dtype)
orview(dtype=some_dtype)
constructs a view of the array's memory with a different data type. This can cause a reinterpretation of the bytes of memory.Only the last axis has to be contiguous.
Limitations
Parameter type is supported only with default value
None
. Otherwise, the function raisesNotImplementedError
exception.Examples
>>> import dpnp as np >>> x = np.ones((4,), dtype=np.float32) >>> xv = x.view(dtype=np.int32) >>> xv[:] = 0 >>> xv array([0, 0, 0, 0], dtype=int32)
However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the axes are not C-contiguous:
>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4) >>> x.transpose(1, 0, 2).view(np.int16) array([[[ 256, 770], [3340, 3854]], [[1284, 1798], [4368, 4882]], [[2312, 2826], [5396, 5910]]], dtype=int16)