dpnp.linalg.lu_factor
- dpnp.linalg.lu_factor(a, overwrite_a=False, check_finite=True)[source]
Compute the pivoted LU decomposition of a matrix.
The decomposition is:
A = P @ L @ U
where P is a permutation matrix, L is lower triangular with unit diagonal elements, and U is upper triangular.
For full documentation refer to
scipy.linalg.lu_factor
.- Parameters:
a ((..., M, N) {dpnp.ndarray, usm_ndarray}) -- Input array to decompose.
overwrite_a ({None, bool}, optional) --
Whether to overwrite data in a (may increase performance).
Default:
False
.check_finite ({None, bool}, optional) --
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Default:
True
.
- Returns:
lu ((..., M, N) dpnp.ndarray) -- Matrix containing U in its upper triangle, and L in its lower triangle. The unit diagonal elements of L are not stored.
piv ((..., K) dpnp.ndarray) -- Pivot indices representing the permutation matrix P: row i of matrix was interchanged with row piv[i]. Where
K = min(M, N)
.
Warning
This function synchronizes in order to validate array elements when
check_finite=True
.Examples
>>> import dpnp as np >>> a = np.array([[4., 3.], [6., 3.]]) >>> lu, piv = np.linalg.lu_factor(a) >>> lu array([[6. , 3. ], [0.66666667, 1. ]]) >>> piv array([1, 1])