dpnp.array_equiv
- dpnp.array_equiv(a1, a2)[source]
Returns
True
if input arrays are shape consistent and all elements equal.Shape consistent means they are either the same shape, or one input array can be broadcasted to create the same shape as the other one.
For full documentation refer to
numpy.array_equiv
.- Parameters:
a1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array. Both inputs x1 and x2 can not be scalars at the same time.
a2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array. Both inputs x1 and x2 can not be scalars at the same time.
- Returns:
out -- A 0-d array with
True
value if the arrays are equivalent,False
otherwise.- Return type:
dpnp.ndarray of bool dtype
Examples
>>> import dpnp as np >>> a = np.array([1, 2]) >>> b = np.array([1, 2]) >>> c = np.array([1, 3]) >>> np.array_equiv(a, b) array(True) >>> np.array_equiv(a, c) array(False)
Showing the shape equivalence:
>>> b = np.array([[1, 2], [1, 2]]) >>> c = np.array([[1, 2, 1, 2], [1, 2, 1, 2]]) >>> np.array_equiv(a, b) array(True) >>> np.array_equiv(a, c) array(False)
>>> b = np.array([[1, 2], [1, 3]]) >>> np.array_equiv(a, b) array(False)