dpnp.true_divide
- dpnp.true_divide(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Calculates the ratio for each element \(x1_i\) of the input array x1 with the respective element \(x2_i\) of the input array x2.
For full documentation refer to
numpy.divide
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have a floating-point data type.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have a floating-point data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None
.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None
.Default:
"K"
.
- Returns:
out -- An array containing the result of element-wise division. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.Notes
At least one of x1 or x2 must be an array.
If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).Equivalent to \(\frac{x1}{x2}\) in terms of array-broadcasting.
The
true_divide(x1, x2)
function is an alias fordivide(x1, x2)
.Examples
>>> import dpnp as np >>> np.divide(dp.array([1, -2, 6, -9]), np.array([-2, -2, -2, -2])) array([-0.5, 1. , -3. , 4.5])
>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[nan, 1. , 1. ], [inf, 4. , 2.5], [inf, 7. , 4. ]])
The
/
operator can be used as a shorthand fordivide
ondpnp.ndarray
.>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = 2 * np.ones(3) >>> x1/x2 array([[0. , 0.5, 1. ], [1.5, 2. , 2.5], [3. , 3.5, 4. ]])