dpnp.lcm
- dpnp.lcm(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Returns the lowest common multiple of \(\abs{x1}\) and \(\abs{x2}\).
For full documentation refer to
numpy.lcm
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have an integer data type.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have an integer data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None
.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None
.Default:
"K"
.
- Returns:
out -- The lowest common multiple of the absolute value of the inputs.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.gcd
The greatest common divisor.
Notes
At least one of x1 or x2 must be an array.
If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).Examples
>>> import dpnp as np >>> np.lcm(np.array(12), 20) array(60) >>> np.lcm(np.arange(6), 20) array([ 0, 20, 20, 60, 20, 20])