Source code for dpnp.random.dpnp_random_state

# cython: language_level=3
# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2016-2025, Intel Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
# *****************************************************************************

"""
Module Intel NumPy RandomState

Set of functions to implement NumPy random module API

    .. seealso:: :obj:`numpy.random.RandomState`

"""


import dpctl.utils as dpu
import numpy

import dpnp
from dpnp.dpnp_utils.dpnp_algo_utils import (
    call_origin,
    map_dtype_to_device,
    use_origin_backend,
)
from dpnp.random.dpnp_algo_random import MCG59, MT19937

__all__ = ["RandomState"]


[docs] class RandomState: """ A container for the Mersenne Twister pseudo-random number generator. For full documentation refer to :obj:`numpy.random.RandomState`. Parameters ---------- seed : {None, int, array_like}, optional A random seed to initialize the pseudo-random number generator. The `seed` can be ``None`` (the default), an integer scalar, or an array of at most three integer scalars. device : {None, string, SyclDevice, SyclQueue}, optional An array API concept of device where the output array is created. The `device` can be ``None`` (the default), an OneAPI filter selector string, an instance of :class:`dpctl.SyclDevice` corresponding to a non-partitioned SYCL device, an instance of :class:`dpctl.SyclQueue`, or a `Device` object returned by :obj:`dpnp.dpnp_array.dpnp_array.device` property. sycl_queue : {None, SyclQueue}, optional A SYCL queue to use for output array allocation and copying. The `sycl_queue` can be passed as ``None`` (the default), which means to get the SYCL queue from `device` keyword if present or to use a default queue. Default: ``None``. """ def __init__(self, seed=None, device=None, sycl_queue=None): self._sycl_queue = dpnp.get_normalized_queue_device( device=device, sycl_queue=sycl_queue ) self._sycl_device = self._sycl_queue.sycl_device is_cpu = self._sycl_device.is_cpu if seed is None: low = 0 high = dpnp.iinfo(numpy.int32).max + 1 if is_cpu: # ask NumPy to generate an array of three random integers as default seed value self._seed = numpy.random.randint(low=low, high=high, size=3) else: # ask NumPy to generate a random 32-bit integer as default seed value self._seed = numpy.random.randint(low=low, high=high, size=1)[0] else: self._seed = seed # 'float32' is default floating data type if device doesn't support 'float64' self._def_float_type = map_dtype_to_device( dpnp.float64, self._sycl_device ) # TODO: rework through pybind11 extension for OneMKL engine and distribution classes if is_cpu: self._random_state = MT19937(self._seed, self._sycl_queue) else: # MCG59 is assumed to provide a better performance on GPU than MT19937 self._random_state = MCG59(self._seed, self._sycl_queue) self._fallback_random_state = call_origin( numpy.random.RandomState, seed, allow_fallback=True ) def __repr__(self): return self.__str__() + " at 0x{:X}".format(id(self)) def __str__(self): _str = self.__class__.__name__ _str += "(" + self._random_state.__class__.__name__ + ")" return _str def __getstate__(self): return self.get_state() def _is_finite_scalar(self, x): """Test a scalar for finiteness (not infinity and not Not a Number).""" # TODO: replace with dpnp.isfinite() once function is available in DPNP, # but for now use direct numpy calls without call_origin() wrapper, since data is a scalar return numpy.isfinite(x) def _is_signbit_scalar(self, x): """Test a scalar if sign bit is set for it (less than zero).""" # TODO: replace with dpnp.signbit() once function is available in DPNP, # but for now use direct numpy calls without call_origin() wrapper, since data is a scalar return numpy.signbit(x) def _validate_float_dtype(self, dtype, supported_types): """ Validate an input floating type. Test an input floating type if it is listed in `supported_types` and if it is supported by the used SYCL device. If `dtype` is ``None``, default floating type will be validating. Return the examined floating type if it follows all validation checks. """ if dtype is None: dtype = self._def_float_type if dtype not in supported_types: raise TypeError(f"dtype={dtype} is unsupported.") elif dtype != map_dtype_to_device(dtype, self._sycl_device): raise RuntimeError( f"dtype={dtype} is not supported by SYCL device '{self._sycl_device}'" ) return dtype
[docs] def get_state(self): """ Return an internal state of the generator. For full documentation refer to :obj:`numpy.random.RandomState.get_state`. Returns ------- out : object An object representing the internal state of the generator. """ return self._random_state
[docs] def get_sycl_queue(self): """ Return an instance of :class:`dpctl.SyclQueue` used within the generator for data allocation. Returns ------- queue : dpctl.SyclQueue A SYCL queue used for data allocation. """ return self._sycl_queue
[docs] def get_sycl_device(self): """ Return an instance of :class:`dpctl.SyclDevice` used within the generator to allocate data on. Returns ------- device : dpctl.SyclDevice A SYCL device used to allocate data on. """ return self._sycl_device
[docs] def normal( self, loc=0.0, scale=1.0, size=None, dtype=None, usm_type="device" ): """ Draw random samples from a normal (Gaussian) distribution. For full documentation refer to :obj:`numpy.random.RandomState.normal`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray Drawn samples from the parameterized normal distribution. Output array data type is the same as input `dtype`. If `dtype` is ``None`` (the default), :obj:`dpnp.float64` type will be used if device supports it, or :obj:`dpnp.float32` otherwise. Limitations ----------- Parameters `loc` and `scale` are supported as a scalar. Otherwise, :obj:`numpy.random.RandomState.normal(loc, scale, size)` samples are drawn. Parameter `dtype` is supported only as :obj:`dpnp.float32`, :obj:`dpnp.float64` or ``None``. Examples -------- >>> s = dpnp.random.RandomState().normal(loc=3.7, scale=2.5, size=(2, 4)) >>> print(s) [[ 1.58997253 -0.84288406 2.33836967 4.16394577] [ 4.40882036 5.39295758 6.48927254 6.74921661]] See Also -------- :obj:`dpnp.random.RandomState.randn` :obj:`dpnp.random.RandomState.standard_normal` """ if not use_origin_backend(): if dpnp.is_cuda_backend(self): # pragma: no cover raise NotImplementedError( "Running on CUDA is currently not supported" ) if not dpnp.isscalar(loc): pass elif not dpnp.isscalar(scale): pass else: dtype = self._validate_float_dtype( dtype, (dpnp.float32, dpnp.float64) ) min_floating = dpnp.finfo(dtype).min max_floating = dpnp.finfo(dtype).max if ( loc >= max_floating or loc <= min_floating ) and self._is_finite_scalar(loc): raise OverflowError( f"Range of loc={loc} exceeds valid bounds" ) if (scale >= max_floating) and self._is_finite_scalar(scale): raise OverflowError( f"Range of scale={scale} exceeds valid bounds" ) # scale = -0.0 is cosidered as negative elif scale < 0 or scale == 0 and self._is_signbit_scalar(scale): raise ValueError( f"scale={scale}, but must be non-negative." ) dpu.validate_usm_type(usm_type, allow_none=False) return self._random_state.normal( loc=loc, scale=scale, size=size, dtype=dtype, usm_type=usm_type, ).get_pyobj() return call_origin( self._fallback_random_state.normal, loc=loc, scale=scale, size=size, sycl_queue=self._sycl_queue, )
[docs] def rand(self, *args, usm_type="device"): """ Draw random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1). For full documentation refer to :obj:`numpy.random.RandomState.rand`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray Random values in a given shape. Output array data type is :obj:`dpnp.float64` if device supports it, or :obj:`dpnp.float32` otherwise. Examples -------- >>> s = dpnp.random.RandomState().rand(5, 2) >>> print(s) [[0.13436424 0.56920387] [0.84743374 0.80226506] [0.76377462 0.06310682] [0.25506903 0.1179187 ] [0.49543509 0.76096244]] See Also -------- :obj:`dpnp.random.RandomState.random_sample` :obj:`dpnp.random.RandomState.uniform` """ if len(args) == 0: return self.random_sample(usm_type=usm_type) else: return self.random_sample(size=args, usm_type=usm_type)
[docs] def randint(self, low, high=None, size=None, dtype=int, usm_type="device"): """ Draw random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the “discrete uniform” distribution of the specified type in the “half-open” interval [low, high). For full documentation refer to :obj:`numpy.random.RandomState.randint`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` is not provided. Output array data type is the same as input `dtype`. Limitations ----------- Parameters `low` and `high` are supported only as a scalar. Parameter `dtype` is supported only as :obj:`dpnp.int32` or ``int``, but ``int`` value is considered to be exactly equivalent to :obj:`dpnp.int32`. Otherwise, :obj:`numpy.random.RandomState.randint(low, high, size, dtype)` samples are drawn. Examples -------- >>> s = dpnp.random.RandomState().randint(2, size=10) >>> print(s) [0 1 1 1 1 0 0 0 0 1] See Also -------- :obj:`dpnp.random.RandomState.random_integers` : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. """ if not use_origin_backend(low): if dpnp.is_cuda_backend(self): # pragma: no cover raise NotImplementedError( "Running on CUDA is currently not supported" ) if not dpnp.isscalar(low): pass elif not (high is None or dpnp.isscalar(high)): pass else: _dtype = dpnp.int32 if dtype is int else dpnp.dtype(dtype) if _dtype != dpnp.int32: pass else: if high is None: high = low low = 0 min_int = dpnp.iinfo("int32").min max_int = dpnp.iinfo("int32").max if ( not self._is_finite_scalar(low) or low > max_int or low < min_int ): raise OverflowError( f"Range of low={low} exceeds valid bounds" ) elif ( not self._is_finite_scalar(high) or high > max_int or high < min_int ): raise OverflowError( f"Range of high={high} exceeds valid bounds" ) low = int(low) high = int(high) if low >= high: raise ValueError(f"low={low} >= high={high}") return self.uniform( low=low, high=high, size=size, dtype=_dtype, usm_type=usm_type, ) return call_origin( self._fallback_random_state.randint, low=low, high=high, size=size, dtype=dtype, sycl_queue=self._sycl_queue, )
[docs] def randn(self, *args, usm_type="device"): """ Return a sample (or samples) from the "standard normal" distribution. For full documentation refer to :obj:`numpy.random.RandomState.randn`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. Output array data type is :obj:`dpnp.float64` if device supports it, or :obj:`dpnp.float32` otherwise. Examples -------- >>> s = dpnp.random.RandomState().randn() >>> print(s) -0.84401099 Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> s = dpnp.random.RandomState().randn(2, 4) >>> print(s) [[ 0.88997253 -1.54288406 1.63836967 3.46394577] [ 3.70882036 4.69295758 5.78927254 6.04921661]] See Also -------- :obj:`dpnp.random.normal` :obj:`dpnp.random.standard_normal` """ if len(args) == 0: return self.standard_normal(usm_type=usm_type) return self.standard_normal(size=args, usm_type=usm_type)
[docs] def random_sample(self, size=None, usm_type="device"): """ Draw random floats in the half-open interval [0.0, 1.0). Results are from the “continuous uniform” distribution over the interval. For full documentation refer to :obj:`numpy.random.RandomState.random_sample`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray Array of random floats of shape `size` (if ``size=None``, zero dimension array with a single float is returned). Output array data type is :obj:`dpnp.float64` if device supports it, or :obj:`dpnp.float32` otherwise. Examples -------- >>> s = dpnp.random.RandomState().random_sample(size=(4,)) >>> print(s) [0.13436424 0.56920387 0.84743374 0.80226506] See Also -------- :obj:`dpnp.random.RandomState.rand` :obj:`dpnp.random.RandomState.uniform` """ return self.uniform( low=0.0, high=1.0, size=size, dtype=None, usm_type=usm_type )
[docs] def standard_normal(self, size=None, usm_type="device"): """ Draw samples from a standard Normal distribution ``(mean=0, stdev=1)``. For full documentation refer to :obj:`numpy.random.RandomState.standard_normal`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray A floating-point array of shape `size` of drawn samples, or a single sample if `size` was not specified. Output array data type is :obj:`dpnp.float64` if device supports it, or :obj:`dpnp.float32` otherwise. Examples -------- >>> s = dpnp.random.RandomState().standard_normal(size=(3, 5)) >>> print(s) [[-0.84401099 -1.81715362 -0.54465213 0.18557831 0.28352814] [ 0.67718303 1.11570901 1.21968665 -1.18236388 0.08156915] [ 0.21941987 -1.24544512 0.63522211 -0.673174 0. ]] See Also -------- :obj:`dpnp.random.RandomState.normal` :obj:`dpnp.random.RandomState.randn` """ return self.normal( loc=0.0, scale=1.0, size=size, dtype=None, usm_type=usm_type )
[docs] def uniform( self, low=0.0, high=1.0, size=None, dtype=None, usm_type="device" ): """ Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform. For full documentation refer to :obj:`numpy.random.RandomState.uniform`. Parameters ---------- usm_type : {"device", "shared", "host"}, optional The type of SYCL USM allocation for the output array. Returns ------- out : dpnp.ndarray Drawn samples from the parameterized uniform distribution. Output array data type is the same as input `dtype`. If `dtype` is ``None`` (the default), :obj:`dpnp.float64` type will be used if device supports it, or :obj:`dpnp.float32` otherwise. Limitations ----------- Parameters `low` and `high` are supported as a scalar. Otherwise, :obj:`numpy.random.RandomState.uniform(low, high, size)` samples are drawn. Parameter `dtype` is supported only as :obj:`dpnp.int32`, :obj:`dpnp.float32`, :obj:`dpnp.float64` or ``None``. Examples -------- >>> low, high = 1.23, 10.54 # low and high >>> s = dpnp.random.RandomState().uniform(low, high, 5) >>> print(s) [2.48093112 6.52928804 9.1196081 8.6990877 8.34074171] See Also -------- :obj:`dpnp.random.RandomState.randint` : Discrete uniform distribution, yielding integers. :obj:`dpnp.random.RandomState.random_integers` : Discrete uniform distribution over the closed interval ``[low, high]``. :obj:`dpnp.random.RandomState.random_sample` : Floats uniformly distributed over ``[0, 1)``. :obj:`dpnp.random.RandomState.random` : Alias for :obj:`dpnp.random.RandomState.random_sample`. :obj:`dpnp.random.RandomState.rand` : Convenience function that accepts dimensions as input, e.g., ``rand(2, 2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. """ if not use_origin_backend(): if dpnp.is_cuda_backend(self): # pragma: no cover raise NotImplementedError( "Running on CUDA is currently not supported" ) if not dpnp.isscalar(low): pass elif not dpnp.isscalar(high): pass else: min_double = dpnp.finfo("double").min max_double = dpnp.finfo("double").max if ( not self._is_finite_scalar(low) or low >= max_double or low <= min_double ): raise OverflowError( f"Range of low={low} exceeds valid bounds" ) elif ( not self._is_finite_scalar(high) or high >= max_double or high <= min_double ): raise OverflowError( f"Range of high={high} exceeds valid bounds" ) if low > high: low, high = high, low dtype = self._validate_float_dtype( dtype, (dpnp.int32, dpnp.float32, dpnp.float64) ) dpu.validate_usm_type(usm_type, allow_none=False) return self._random_state.uniform( low=low, high=high, size=size, dtype=dtype, usm_type=usm_type, ).get_pyobj() return call_origin( self._fallback_random_state.uniform, low=low, high=high, size=size, sycl_queue=self._sycl_queue, )