dpnp.random.RandomState
- class dpnp.random.RandomState(seed=None, device=None, sycl_queue=None)[source]
- A container for the Mersenne Twister pseudo-random number generator. - For full documentation refer to - numpy.random.RandomState.- Parameters:
- seed ({None, int, array_like}, optional) -- A random seed to initialize the pseudo-random number generator. The seed can be - None(the default), an integer scalar, or an array of at most three integer scalars.
- device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be - None(the default), an OneAPI filter selector string, an instance of- dpctl.SyclDevicecorresponding to a non-partitioned SYCL device, an instance of- dpctl.SyclQueue, or a Device object returned by- dpnp.dpnp_array.dpnp_array.deviceproperty.
- sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as - None(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:- None.
 
 - Methods - get_state()[source]
- Return an internal state of the generator. - For full documentation refer to - numpy.random.RandomState.get_state.- Returns:
- out -- An object representing the internal state of the generator. 
- Return type:
 
 - get_sycl_device()[source]
- Return an instance of - dpctl.SyclDeviceused within the generator to allocate data on.- Returns:
- device -- A SYCL device used to allocate data on. 
- Return type:
- dpctl.SyclDevice 
 
 - get_sycl_queue()[source]
- Return an instance of - dpctl.SyclQueueused within the generator for data allocation.- Returns:
- queue -- A SYCL queue used for data allocation. 
- Return type:
- dpctl.SyclQueue 
 
 - normal(loc=0.0, scale=1.0, size=None, dtype=None, usm_type='device')[source]
- Draw random samples from a normal (Gaussian) distribution. - For full documentation refer to - numpy.random.RandomState.normal.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- Drawn samples from the parameterized normal distribution. Output array data type is the same as input dtype. If dtype is - None(the default),- dpnp.float64type will be used if device supports it, or- dpnp.float32otherwise.
- Return type:
- dpnp.ndarray 
 - Limitations - Parameters loc and scale are supported as a scalar. Otherwise, - numpy.random.RandomState.normal(loc, scale, size)samples are drawn. Parameter dtype is supported only as- dpnp.float32,- dpnp.float64or- None.- Examples - >>> s = dpnp.random.RandomState().normal(loc=3.7, scale=2.5, size=(2, 4)) >>> print(s) [[ 1.58997253 -0.84288406 2.33836967 4.16394577] [ 4.40882036 5.39295758 6.48927254 6.74921661]] 
 - rand(*args, usm_type='device')[source]
- Draw random values in a given shape. - Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1). - For full documentation refer to - numpy.random.RandomState.rand.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- Random values in a given shape. Output array data type is - dpnp.float64if device supports it, or- dpnp.float32otherwise.
- Return type:
- dpnp.ndarray 
 - Examples - >>> s = dpnp.random.RandomState().rand(5, 2) >>> print(s) [[0.13436424 0.56920387] [0.84743374 0.80226506] [0.76377462 0.06310682] [0.25506903 0.1179187 ] [0.49543509 0.76096244]] 
 - randint(low, high=None, size=None, dtype=<class 'int'>, usm_type='device')[source]
- Draw random integers from low (inclusive) to high (exclusive). - Return random integers from the “discrete uniform” distribution of the specified type in the “half-open” interval [low, high). - For full documentation refer to - numpy.random.RandomState.randint.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- size-shaped array of random integers from the appropriate distribution, or a single such random int if size is not provided. Output array data type is the same as input dtype. 
- Return type:
- dpnp.ndarray 
 - Limitations - Parameters low and high are supported only as a scalar. Parameter dtype is supported only as - dpnp.int32or- int, but- intvalue is considered to be exactly equivalent to- dpnp.int32. Otherwise,- numpy.random.RandomState.randint(low, high, size, dtype)samples are drawn.- Examples - >>> s = dpnp.random.RandomState().randint(2, size=10) >>> print(s) [0 1 1 1 1 0 0 0 0 1] - See also - dpnp.random.RandomState.random_integers
- similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted. 
 
 - randn(*args, usm_type='device')[source]
- Return a sample (or samples) from the "standard normal" distribution. - For full documentation refer to - numpy.random.RandomState.randn.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- A - (d0, d1, ..., dn)-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. Output array data type is- dpnp.float64if device supports it, or- dpnp.float32otherwise.
- Return type:
- dpnp.ndarray 
 - Examples - >>> s = dpnp.random.RandomState().randn() >>> print(s) -0.84401099 - Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: - >>> s = dpnp.random.RandomState().randn(2, 4) >>> print(s) [[ 0.88997253 -1.54288406 1.63836967 3.46394577] [ 3.70882036 4.69295758 5.78927254 6.04921661]] 
 - random_sample(size=None, usm_type='device')[source]
- Draw random floats in the half-open interval [0.0, 1.0). - Results are from the “continuous uniform” distribution over the interval. - For full documentation refer to - numpy.random.RandomState.random_sample.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- Array of random floats of shape size (if - size=None, zero dimension array with a single float is returned). Output array data type is- dpnp.float64if device supports it, or- dpnp.float32otherwise.
- Return type:
- dpnp.ndarray 
 - Examples - >>> s = dpnp.random.RandomState().random_sample(size=(4,)) >>> print(s) [0.13436424 0.56920387 0.84743374 0.80226506] 
 - standard_normal(size=None, usm_type='device')[source]
- Draw samples from a standard Normal distribution - (mean=0, stdev=1).- For full documentation refer to - numpy.random.RandomState.standard_normal.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- A floating-point array of shape size of drawn samples, or a single sample if size was not specified. Output array data type is - dpnp.float64if device supports it, or- dpnp.float32otherwise.
- Return type:
- dpnp.ndarray 
 - Examples - >>> s = dpnp.random.RandomState().standard_normal(size=(3, 5)) >>> print(s) [[-0.84401099 -1.81715362 -0.54465213 0.18557831 0.28352814] [ 0.67718303 1.11570901 1.21968665 -1.18236388 0.08156915] [ 0.21941987 -1.24544512 0.63522211 -0.673174 0. ]] 
 - uniform(low=0.0, high=1.0, size=None, dtype=None, usm_type='device')[source]
- Draw samples from a uniform distribution. - Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform. - For full documentation refer to - numpy.random.RandomState.uniform.- Parameters:
- usm_type ({"device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. 
- Returns:
- out -- Drawn samples from the parameterized uniform distribution. Output array data type is the same as input dtype. If dtype is - None(the default),- dpnp.float64type will be used if device supports it, or- dpnp.float32otherwise.
- Return type:
- dpnp.ndarray 
 - Limitations - Parameters low and high are supported as a scalar. Otherwise, - numpy.random.RandomState.uniform(low, high, size)samples are drawn. Parameter dtype is supported only as- dpnp.int32,- dpnp.float32,- dpnp.float64or- None.- Examples - >>> low, high = 1.23, 10.54 # low and high >>> s = dpnp.random.RandomState().uniform(low, high, 5) >>> print(s) [2.48093112 6.52928804 9.1196081 8.6990877 8.34074171] - See also - dpnp.random.RandomState.randint
- Discrete uniform distribution, yielding integers. 
- dpnp.random.RandomState.random_integers
- Discrete uniform distribution over the closed interval - [low, high].
- dpnp.random.RandomState.random_sample
- Floats uniformly distributed over - [0, 1).
- dpnp.random.RandomState.random
- Alias for - dpnp.random.RandomState.random_sample.
- dpnp.random.RandomState.rand
- Convenience function that accepts dimensions as input, e.g., - rand(2, 2)would generate a 2-by-2 array of floats, uniformly distributed over- [0, 1).
 
 - __eq__(value, /)
- Return self==value. 
 - __ne__(value, /)
- Return self!=value. 
 - __lt__(value, /)
- Return self<value. 
 - __le__(value, /)
- Return self<=value. 
 - __gt__(value, /)
- Return self>value. 
 - __ge__(value, /)
- Return self>=value.