dpnp.logical_xor
- dpnp.logical_xor(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the logical XOR for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.logical_xor.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array. Both inputs x1 and x2 can not be scalars at the same time. If
x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None.Default:
"K".
- Returns:
out -- An array containing the element-wise logical XOR results.
- Return type:
dpnp.ndarray of bool dtype
Limitations
Parameters where and subok are supported with their default values. Otherwise
NotImplementedErrorexception will be raised.See also
dpnp.logical_andCompute the truth value of x1 AND x2 element-wise.
dpnp.logical_orCompute the truth value of x1 OR x2 element-wise.
dpnp.logical_notCompute the truth value of NOT x element-wise.
dpnp.bitwise_xorCompute the bit-wise XOR of two arrays element-wise.
Examples
>>> import dpnp as np >>> x1 = np.array([True, True, False, False]) >>> x2 = np.array([True, False, True, False]) >>> np.logical_xor(x1, x2) array([False, True, True, False])
>>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True])
Simple example showing support of broadcasting
>>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]])