Source code for dpnp.dpnp_iface_histograms

# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2024, Intel Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
# *****************************************************************************

"""
Interface of histogram-related DPNP functions

Notes
-----
This module is a face or public interface file for the library
it contains:
 - Interface functions
 - documentation for the functions
 - The functions parameters check

"""

import operator
import warnings

import dpctl.utils as dpu
import numpy

import dpnp

__all__ = [
    "digitize",
    "histogram",
    "histogram_bin_edges",
]

# range is a keyword argument to many functions, so save the builtin so they can
# use it.
_range = range


def _ravel_check_a_and_weights(a, weights):
    """
    Check input `a` and `weights` arrays, and ravel both.
    The returned array have :class:`dpnp.ndarray` type always.

    """

    # ensure that `a` array has supported type
    dpnp.check_supported_arrays_type(a)
    usm_type = a.usm_type

    # ensure that the array is a "subtractable" dtype
    if a.dtype == dpnp.bool:
        warnings.warn(
            f"Converting input from {a.dtype} to {numpy.uint8} "
            "for compatibility.",
            RuntimeWarning,
            stacklevel=3,
        )
        a = dpnp.astype(a, numpy.uint8)

    if weights is not None:
        # check that `weights` array has supported type
        dpnp.check_supported_arrays_type(weights)
        usm_type = dpu.get_coerced_usm_type([usm_type, weights.usm_type])

        # check that arrays have the same allocation queue
        if dpu.get_execution_queue([a.sycl_queue, weights.sycl_queue]) is None:
            raise ValueError(
                "a and weights must be allocated on the same SYCL queue"
            )

        if weights.shape != a.shape:
            raise ValueError("weights should have the same shape as a.")
        weights = dpnp.ravel(weights)

    a = dpnp.ravel(a)
    return a, weights, usm_type


def _get_outer_edges(a, range):
    """
    Determine the outer bin edges to use, from either the data or the range
    argument.

    """

    if range is not None:
        first_edge, last_edge = range
        if first_edge > last_edge:
            raise ValueError("max must be larger than min in range parameter.")

        if not (numpy.isfinite(first_edge) and numpy.isfinite(last_edge)):
            raise ValueError(
                f"supplied range of [{first_edge}, {last_edge}] is not finite"
            )

    elif a.size == 0:
        # handle empty arrays. Can't determine range, so use 0-1.
        first_edge, last_edge = 0, 1

    else:
        first_edge, last_edge = a.min(), a.max()
        if not (dpnp.isfinite(first_edge) and dpnp.isfinite(last_edge)):
            raise ValueError(
                f"autodetected range of [{first_edge}, {last_edge}] "
                "is not finite"
            )

    # expand empty range to avoid divide by zero
    if first_edge == last_edge:
        first_edge = first_edge - 0.5
        last_edge = last_edge + 0.5

    return first_edge, last_edge


def _get_bin_edges(a, bins, range, usm_type):
    """Computes the bins used internally by `histogram`."""

    # parse the overloaded bins argument
    n_equal_bins = None
    bin_edges = None
    sycl_queue = a.sycl_queue

    if isinstance(bins, str):
        # TODO: implement support of string bins
        raise NotImplementedError("only integer and array bins are implemented")

    if numpy.ndim(bins) == 0:
        try:
            n_equal_bins = operator.index(bins)
        except TypeError as e:
            raise TypeError("`bins` must be an integer or an array") from e
        if n_equal_bins < 1:
            raise ValueError("`bins` must be positive, when an integer")

        first_edge, last_edge = _get_outer_edges(a, range)

    elif numpy.ndim(bins) == 1:
        if dpnp.is_supported_array_type(bins):
            if dpu.get_execution_queue([a.sycl_queue, bins.sycl_queue]) is None:
                raise ValueError(
                    "a and bins must be allocated on the same SYCL queue"
                )

            bin_edges = bins
        else:
            bin_edges = dpnp.asarray(
                bins, sycl_queue=sycl_queue, usm_type=usm_type
            )

        if dpnp.any(bin_edges[:-1] > bin_edges[1:]):
            raise ValueError(
                "`bins` must increase monotonically, when an array"
            )

    else:
        raise ValueError("`bins` must be 1d, when an array")

    if n_equal_bins is not None:
        # numpy's gh-10322 means that type resolution rules are dependent on
        # array shapes. To avoid this causing problems, we pick a type now and
        # stick with it throughout.
        # pylint: disable=possibly-used-before-assignment
        bin_type = dpnp.result_type(first_edge, last_edge, a)
        if dpnp.issubdtype(bin_type, dpnp.integer):
            bin_type = dpnp.result_type(
                bin_type, dpnp.default_float_type(sycl_queue=sycl_queue), a
            )

        # bin edges must be computed
        bin_edges = dpnp.linspace(
            first_edge,
            last_edge,
            n_equal_bins + 1,
            endpoint=True,
            dtype=bin_type,
            sycl_queue=sycl_queue,
            usm_type=usm_type,
        )
        return bin_edges, (first_edge, last_edge, n_equal_bins)
    return bin_edges, None


def _search_sorted_inclusive(a, v):
    """
    Like :obj:`dpnp.searchsorted`, but where the last item in `v` is placed
    on the right.
    In the context of a histogram, this makes the last bin edge inclusive

    """

    return dpnp.concatenate(
        (a.searchsorted(v[:-1], "left"), a.searchsorted(v[-1:], "right"))
    )


[docs] def digitize(x, bins, right=False): """ Return the indices of the bins to which each value in input array belongs. For full documentation refer to :obj:`numpy.digitize`. Parameters ---------- a : {dpnp.ndarray, usm_ndarray} Input array to be binned. bins : {dpnp.ndarray, usm_ndarray} Array of bins. It has to be 1-dimensional and monotonic increasing or decreasing. right : bool, optional Indicates whether the intervals include the right or the left bin edge. Default: ``False``. Returns ------- indices : dpnp.ndarray Array of indices with the same shape as `x`. Notes ----- This will not raise an exception when the input array is not monotonic. See Also -------- :obj:`dpnp.bincount` : Count number of occurrences of each value in array of non-negative integers. :obj:`dpnp.histogram` : Compute the histogram of a data set. :obj:`dpnp.unique` : Find the unique elements of an array. :obj:`dpnp.searchsorted` : Find indices where elements should be inserted to maintain order. Examples -------- >>> import dpnp as np >>> x = np.array([0.2, 6.4, 3.0, 1.6]) >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) >>> inds = np.digitize(x, bins) >>> inds array([1, 4, 3, 2]) >>> for n in range(x.size): ... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]) ... 0. <= 0.2 < 1. 4. <= 6.4 < 10. 2.5 <= 3. < 4. 1. <= 1.6 < 2.5 >>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) >>> bins = np.array([0, 5, 10, 15, 20]) >>> np.digitize(x, bins, right=True) array([1, 2, 3, 4, 4]) >>> np.digitize(x, bins, right=False) array([1, 3, 3, 4, 5]) """ dpnp.check_supported_arrays_type(x, bins) if dpnp.issubdtype(x.dtype, dpnp.complexfloating): raise TypeError("x may not be complex") if bins.ndim > 1: raise ValueError("object too deep for desired array") if bins.ndim < 1: raise ValueError("object of too small depth for desired array") # This is backwards because the arguments below are swapped side = "left" if right else "right" # Check if bins are monotonically increasing. # If bins is empty, the array is considered to be increasing. # If all bins are NaN, the array is considered to be decreasing. if bins.size == 0: bins_increasing = True else: bins_increasing = bins[0] <= bins[-1] or ( not dpnp.isnan(bins[0]) and dpnp.isnan(bins[-1]) ) if bins_increasing: # Use dpnp.searchsorted directly if bins are increasing return dpnp.searchsorted(bins, x, side=side) # Reverse bins and adjust indices if bins are decreasing return bins.size - dpnp.searchsorted(bins[::-1], x, side=side)
[docs] def histogram(a, bins=10, range=None, density=None, weights=None): """ Compute the histogram of a data set. For full documentation refer to :obj:`numpy.histogram`. Parameters ---------- a : {dpnp.ndarray, usm_ndarray} Input data. The histogram is computed over the flattened array. bins : {int, dpnp.ndarray, usm_ndarray, sequence of scalars}, optional If `bins` is an int, it defines the number of equal-width bins in the given range. If `bins` is a sequence, it defines a monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. Default: ``10``. range : {None, 2-tuple of float}, optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. The first element of the range must be less than or equal to the second. `range` affects the automatic bin computation as well. While bin width is computed to be optimal based on the actual data within `range`, the bin count will fill the entire range including portions containing no data. Default: ``None``. density : {None, bool}, optional If ``False`` or ``None``, the result will contain the number of samples in each bin. If ``True``, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is ``1``. Note that the sum of the histogram values will not be equal to ``1`` unless bins of unity width are chosen; it is not a probability *mass* function. Default: ``None``. weights : {None, dpnp.ndarray, usm_ndarray}, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `density` is ``True``, the weights are normalized, so that the integral of the density over the range remains ``1``. Please note that the ``dtype`` of `weights` will also become the ``dtype`` of the returned accumulator (`hist`), so it must be large enough to hold accumulated values as well. Default: ``None``. Returns ------- hist : {dpnp.ndarray} The values of the histogram. See `density` and `weights` for a description of the possible semantics. If `weights` are given, ``hist.dtype`` will be taken from `weights`. bin_edges : {dpnp.ndarray of floating data type} Return the bin edges ``(length(hist) + 1)``. See Also -------- :obj:`dpnp.histogramdd` : Compute the multidimensional histogram. :obj:`dpnp.bincount` : Count number of occurrences of each value in array of non-negative integers. :obj:`dpnp.searchsorted` : Find indices where elements should be inserted to maintain order. :obj:`dpnp.digitize` : Return the indices of the bins to which each value in input array belongs. :obj:`dpnp.histogram_bin_edges` : Return only the edges of the bins used by the obj:`dpnp.histogram` function. Examples -------- >>> import dpnp as np >>> np.histogram(np.array([1, 2, 1]), bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram(np.array([[1, 2, 1], [1, 0, 1]]), bins=[0, 1, 2, 3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() array(2.5) >>> np.sum(hist * np.diff(bin_edges)) array(1.) """ a, weights, usm_type = _ravel_check_a_and_weights(a, weights) bin_edges, uniform_bins = _get_bin_edges(a, bins, range, usm_type) # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = dpnp.dtype(dpnp.intp) else: ntype = weights.dtype # The fast path uses bincount, but that only works for certain types # of weight # simple_weights = ( # weights is None or # dpnp.can_cast(weights.dtype, dpnp.double) or # dpnp.can_cast(weights.dtype, complex) # ) # TODO: implement a fast path simple_weights = False if uniform_bins is not None and simple_weights: # TODO: implement fast algorithm for equal bins pass else: # Compute via cumulative histogram if weights is None: sa = dpnp.sort(a) cum_n = _search_sorted_inclusive(sa, bin_edges) else: zero = dpnp.zeros( 1, dtype=ntype, sycl_queue=a.sycl_queue, usm_type=usm_type ) sorting_index = dpnp.argsort(a) sa = a[sorting_index] sw = weights[sorting_index] cw = dpnp.concatenate((zero, sw.cumsum(dtype=ntype))) bin_index = _search_sorted_inclusive(sa, bin_edges) cum_n = cw[bin_index] n = dpnp.diff(cum_n) if density: # pylint: disable=possibly-used-before-assignment db = dpnp.diff(bin_edges).astype(dpnp.default_float_type()) return n / db / n.sum(), bin_edges return n, bin_edges
[docs] def histogram_bin_edges(a, bins=10, range=None, weights=None): """ Function to calculate only the edges of the bins used by the :obj:`dpnp.histogram` function. For full documentation refer to :obj:`numpy.histogram_bin_edges`. Parameters ---------- a : {dpnp.ndarray, usm_ndarray} Input data. The histogram is computed over the flattened array. bins : {int, dpnp.ndarray, usm_ndarray, sequence of scalars}, optional If `bins` is an int, it defines the number of equal-width bins in the given range. If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Default: ``10``. range : {None, 2-tuple of float}, optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. The first element of the range must be less than or equal to the second. `range` affects the automatic bin computation as well. While bin width is computed to be optimal based on the actual data within `range`, the bin count will fill the entire range including portions containing no data. Default: ``None``. weights : {None, dpnp.ndarray, usm_ndarray}, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). This is currently not used by any of the bin estimators, but may be in the future. Default: ``None``. Returns ------- bin_edges : {dpnp.ndarray of floating data type} The edges to pass into :obj:`dpnp.histogram`. See Also -------- :obj:`dpnp.histogram` : Compute the histogram of a data set. Examples -------- >>> import dpnp as np >>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5]) >>> np.histogram_bin_edges(arr, bins=2) array([0. , 2.5, 5. ]) For consistency with histogram, an array of pre-computed bins is passed through unmodified: >>> np.histogram_bin_edges(arr, [1, 2]) array([1, 2]) This function allows one set of bins to be computed, and reused across multiple histograms: >>> shared_bins = np.histogram_bin_edges(arr, bins=5) >>> shared_bins array([0., 1., 2., 3., 4., 5.]) >>> gid = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1]) >>> hist_0, _ = np.histogram(arr[gid == 0], bins=shared_bins) >>> hist_1, _ = np.histogram(arr[gid == 1], bins=shared_bins) >>> hist_0, hist_1 (array([1, 1, 0, 1, 0]), array([2, 0, 1, 1, 2])) Which gives more easily comparable results than using separate bins for each histogram: >>> hist_0, bins_0 = np.histogram(arr[gid == 0], bins=3) >>> hist_1, bins_1 = np.histogram(arr[gid == 1], bins=4) >>> hist_0, hist_1 (array([1, 1, 1]), array([2, 1, 1, 2])) >>> bins_0, bins_1 (array([0., 1., 2., 3.]), array([0. , 1.25, 2.5 , 3.75, 5. ])) """ a, weights, usm_type = _ravel_check_a_and_weights(a, weights) bin_edges, _ = _get_bin_edges(a, bins, range, usm_type) return bin_edges