dpnp.fft.fft
- dpnp.fft.fft(a, n=None, axis=-1, norm=None, out=None)[source]
Compute the one-dimensional discrete Fourier Transform.
For full documentation refer to
numpy.fft.fft
.- Parameters:
a ({dpnp.ndarray, usm_ndarray}) -- Input array, can be complex.
n ({None, int}, optional) -- Length of the transformed axis of the output. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used. Default:
None
.axis (int, optional) -- Axis over which to compute the FFT. If not given, the last axis is used. Default:
-1
.norm ({None, "backward", "ortho", "forward"}, optional) -- Normalization mode (see
dpnp.fft
). Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor.None
is an alias of the default option"backward"
. Default:"backward"
.out ({None, dpnp.ndarray or usm_ndarray of complex dtype}, optional) -- If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. Default:
None
.
- Returns:
out -- The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified.
- Return type:
dpnp.ndarray of complex dtype
See also
dpnp.fft
For definition of the DFT and conventions used.
dpnp.fft.ifft
The inverse of
dpnp.fft.fft
.dpnp.fft.fft2
The two-dimensional FFT.
dpnp.fft.fftn
The n-dimensional FFT.
dpnp.fft.rfftn
The n-dimensional FFT of real input.
dpnp.fft.fftfreq
Frequency bins for given FFT parameters.
Notes
FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform is therefore most efficient for these sizes.
Examples
>>> import dpnp as np >>> a = np.exp(2j * np.pi * np.arange(8) / 8) >>> np.fft.fft(a) array([-3.44509285e-16+1.14423775e-17j, 8.00000000e+00-8.52069395e-16j, 2.33486982e-16+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j, 9.95799250e-17+2.33486982e-16j, -8.88178420e-16+1.17281316e-16j, 1.14423775e-17+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j])