dpnp.add
- dpnp.add(x1, x2, out=None, order='K', dtype=None, casting='same_kind', **kwargs)
Calculates the sum for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.add
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray}) -- Input arrays, expected to have numeric data type.
x2 ({dpnp.ndarray, usm_ndarray}) -- Input arrays, expected to have numeric data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type.
order ({None, "C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, Cannot be provided together with out. Default:
"K"
.dtype ({None, dtype}, optional) -- If provided, the destination array will have this dtype. Cannot be provided together with out. Default:
None
.casting ({"no", "equiv", "safe", "same_kind", "unsafe"}, optional) -- Controls what kind of data casting may occur. Cannot be provided together with out. Default:
"safe"
.
- Returns:
out -- An array containing the element-wise sums. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Keyword arguments where and subok are supported with their default values. Other keyword arguments is currently unsupported. Otherwise
NotImplementedError
exception will be raised.Notes
Equivalent to x1 + x2 in terms of array broadcasting.
Examples
>>> import dpnp as np >>> a = np.array([1, 2, 3]) >>> b = np.array([1, 2, 3]) >>> np.add(a, b) array([2, 4, 6])
>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])
The
+
operator can be used as a shorthand foradd
ondpnp.ndarray
.>>> x1 + x2 array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])