dpnp.absolute
- dpnp.absolute(x, out=None, order='K', dtype=None, casting='same_kind', **kwargs)
Calculates the absolute value for each element x_i of input array x.
For full documentation refer to
numpy.absolute.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input arrays, expected to have numeric data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type.
order ({None, "C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, Cannot be provided together with out. Default:
"K".dtype ({None, dtype}, optional) -- If provided, the destination array will have this dtype. Cannot be provided together with out. Default:
None.casting ({"no", "equiv", "safe", "same_kind", "unsafe"}, optional) -- Controls what kind of data casting may occur. Cannot be provided together with out. Default:
"safe".
- Returns:
out -- An array containing the element-wise absolute values. For complex input, the absolute value is its magnitude. If x has a real-valued data type, the returned array has the same data type as x. If x has a complex floating-point data type, the returned array has a real-valued floating-point data type whose precision matches the precision of x.
- Return type:
dpnp.ndarray
Limitations
Keyword arguments where and subok are supported with their default values. Other keyword arguments is currently unsupported. Otherwise
NotImplementedErrorexception will be raised.See also
dpnp.fabsCalculate the absolute value element-wise excluding complex types.
Notes
dpnp.absis a shorthand for this function.Examples
>>> import dpnp as np >>> a = np.array([-1.2, 1.2]) >>> np.absolute(a) array([1.2, 1.2])
>>> a = np.array(1.2 + 1j) >>> np.absolute(a) array(1.5620499351813308)