dpnp.linalg.matrix_power
- dpnp.linalg.matrix_power(a, n)[source]
Raise a square matrix to the (integer) power n.
For full documentation refer to
numpy.linalg.matrix_power
.- Parameters:
a ((..., M, M) {dpnp.ndarray, usm_ndarray}) – Matrix to be “powered”.
n (int) – The exponent can be any integer or long integer, positive, negative, or zero.
- Returns:
a**n ((…, M, M) dpnp.ndarray) – The return value is the same shape and type as M; if the exponent is positive or zero then the type of the elements is the same as those of M. If the exponent is negative the elements are floating-point.
>>> import dpnp as np
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> np.linalg.matrix_power(i, 3) # should = -i
array([[ 0, -1], – [ 1, 0]])
>>> np.linalg.matrix_power(i, 0)
array([[1, 0], – [0, 1]])
>>> np.linalg.matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[ 0., 1.], – [-1., 0.]])
Somewhat more sophisticated example
>>> q = np.zeros((4, 4))
>>> q[0 (2, 0:2] = -i)
>>> q[2 (4, 2:4] = i)
>>> q # one of the three quaternion units not equal to 1
array([[ 0., -1., 0., 0.], – [ 1., 0., 0., 0.], [ 0., 0., 0., 1.], [ 0., 0., -1., 0.]])
>>> np.linalg.matrix_power(q, 2) # = -np.eye(4)
array([[-1., 0., 0., 0.], – [ 0., -1., 0., 0.], [ 0., 0., -1., 0.], [ 0., 0., 0., -1.]])